Damped Chirp Mixture Estimation via Nonlinear Bayesian Regression - Equipe Signal, Statistique et Apprentissage Accéder directement au contenu
Communication Dans Un Congrès Année : 2021

Damped Chirp Mixture Estimation via Nonlinear Bayesian Regression

Résumé

Estimating mixtures of damped chirp sinusoids in noise is a problem that affects audio analysis, coding, and synthesis applications. Phase-based non-stationary parameter estimators assume that sinusoids can be resolved in the Fourier transform domain, whereas high-resolution methods estimate superimposed components with accuracy close to the theoretical limits, but only for sinusoids with constant frequencies. We present a new method for estimating the parameters of superimposed damped chirps that has an accuracy competitive with existing non-stationary estimators but also has a high-resolution like subspace techniques. After providing the analytical expression for a Gaussian-windowed damped chirp signal's Fourier transform, we propose an efficient variational EM algorithm for nonlinear Bayesian regression that jointly estimates the amplitudes, phases, frequencies, chirp rates, and decay rates of multiple non-stationary components that may be obfuscated under the same local maximum in the frequency spectrum. Quantitative results show that the new method not only has an estimation accuracy that is close to the Cramér-Rao bound, but also a high resolution that outperforms the state-of-the-art.
Fichier principal
Vignette du fichier
2021_DAFx_Damped_Chirp_Mixture_Neri_Julian_S3.pdf (416.36 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03255349 , version 1 (17-05-2022)

Identifiants

  • HAL Id : hal-03255349 , version 1

Citer

Julian Neri, Philippe Depalle, Roland Badeau. Damped Chirp Mixture Estimation via Nonlinear Bayesian Regression. 23rd International Conference on Digital Audio Effects (DAFx2020), Sep 2021, Vienne, Austria. ⟨hal-03255349⟩
72 Consultations
52 Téléchargements

Partager

Gmail Facebook X LinkedIn More