E. Bareinboim, J. Tian, and J. Pearl, Recovering from Selection Bias in Causal and Statistical Inference, Proceedings of the 28th National Conference on Artificial Intelligence (AAAI), pp.2410-2416, 2014.

R. Berk, H. Heidari, S. Jabbari, M. Kearns, R. et al., Fairness in criminal justice risk assessments: The state of the art, 2017.

P. Bertail, E. Chautru, C. , and S. , Empirical Processes in Survey Sampling with (Conditional) Poisson Designs, Scand J Statist, vol.44, pp.97-111, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02107503

C. J. Block, S. M. Koch, B. E. Liberman, T. J. Merriweather, and L. Roberson, Contending With Stereotype Threat at Work: A Model of Long-Term Responses, The Counseling Psychologist, vol.39, issue.4, pp.570-600, 2011.

J. Buolamwini and T. Gebru, Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification, Proceedings of the 1st Conference on Fairness, Accountability and Transparency, vol.81, pp.77-91, 2018.

H. Boistard, R. Lopuhaä, and A. Ruiz-gazen, Functional central limit theorems for single-stage sampling designs, Annals of Statistics, vol.45, issue.4, pp.1728-1758, 2017.

G. Bologna and Y. Hayashi, Characterization of symbolic rules embedded in deep dimlp networks: A challenge to transparency of deep learning, Journal of Articial Intelligence and Soft Computing Research, vol.7, issue.4, p.265, 2017.

T. Bolukbasi, K. Chang, J. Zou, V. Saligrama, and A. Kalai, Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings, 30th Conference on Neural Information Processing Systems (NIPS 2016), 2016.

L. Borrajo and R. Cao, Nonparametric Mean Estimation for Big-But-Biased Data, The Mathematics of the Uncertain, vol.142, pp.55-65, 2018.

A. Chander, The Racist Algorithm? Michigan Law Review, p.115, 2017.

J. Chen and J. Shao, Nearest Neighbor Imputation for Survey Data, Journal of Official Statistics, vol.16, issue.2, pp.113-131, 2000.

A. Chouldechova, Fair prediction with disparate impact: A study of bias in recidivism prediction instruments, Big Data, vol.5, issue.2, pp.153-163, 2017.

S. Clémençon, P. Bertail, and P. Chautru, Sampling and empirical risk minimization, Statistics, vol.51, issue.1, 2017.

S. Corbett-davies and S. Goel, The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine Learning, 2018.

C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh, Sample selection bias correction theory, Proceedings of the 19th International Conference on Algorithmic Learning Theory, ALT '08, pp.38-53, 2008.

B. Cowgill and C. Tucker, Algorithmic Bias: A Counterfactual Perspective. NSF Trustworthy Algorithms, 2017.

N. Diakopoulos, Accountability in algorithmic decision-making, Communications of the ACM, vol.59, issue.2, pp.56-62, 2016.

C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, Fairness Through Awareness, Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS '12, pp.214-226, 2012.

B. Edelman, M. Luca, and D. Svirsky, Racial Discrimination in the Sharing Economy: Evidence from a Field Experiment, American Economic Journal: Applied Economics, vol.9, issue.2, 2017.

J. Fan, H. Fang, and H. L. , Challenges of Big Data Analysis, National Science Review, vol.1, issue.2, pp.293-314, 2014.

S. Friedler, C. Scheidegger, and S. Venkatasubramanian, On the (im)possibility of fairness, 2016.

P. Hall and N. Tajvidi, Permutation tests for equality of distribution in high dimension, Biometrika, vol.89, pp.359-374, 2002.

E. Hamilton, Benchmarking Four Approaches to Fairness-Aware Machine Learning, 2016.

J. F. Josse, V. Husson, and . Audigier, Mimca: Multiple imputation for categorical variables with multiple correspondence analysis, Statistics and Computing, vol.27, pp.501-518, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01170864

D. Kahneman and A. Tversky, Judgment under Uncertainty: Heuristics and Biases, Science, New Series, vol.185, issue.4157, pp.1124-1131, 1974.

D. Keats-citron and F. Pasquale, The Scored Society: Due Process for Automated Predictions, Washington Law Review, 2014.

S. C. Kolm, Justice and Equity, 1998.

M. Kosinski and Y. Wang, Deep Neural Networks Are More Accurate Than Humans at Detecting Sexual Orientation From Facial, Images Journal of Personality and Social Psychology, vol.114, issue.2, pp.246-257, 2018.

A. Lambrecht and C. Tucker, Algorithmic Bias? An Empirical Study into Apparent Gender-Based Discrimination in the Display of STEM Career Ads, 2018.

Z. C. Lipton, The Mythos of Interpretability, Proceedings of the 2016 ICML Workshop on Human Interpretability in Machine Learning, 2016.

J. R. Loftus, C. Russell, M. J. Kusner, and R. Silva, Causal Reasoning for Algorithmic Fairness, 2018.

P. Megan and . P. Ball, Big Data, Selection Bias, and the Statistical Patterns of Mortality in Conflict, SAIS Review of International Affairs, vol.34, issue.1, pp.9-20, 2014.

F. Pasquale, The Black Box Society: The Secret Algorithms That Control Money and Information, 2015.

F. Pasquale, Restoring Transparency to Automated Authority, Journal of High Technology and Telecommunications Law, 2010.

D. Pedreshi, S. Ruggieri, and F. Turini, Discrimination-aware Data Mining, InProceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '08, pp.560-568, 2008.

W. Samek, T. Wiegand, and K. Müller, Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models, 2017.

K. Sandvig, K. Hamilton, C. Karahalios, and . Langbort, Auditing algorithms: Research methods for detecting discrimination on internet platforms. Data and Discrimination: Converting Critical Concerns into Productive Inquiry, 2014.

G. J. Szekely and M. L. Rizzo, Testing for equal distributions in high dimension, pp.1249-1272, 2004.

Z. Tufekci, Big Questions for Social Media Big Data: Representativeness, Validity and Other Methodological Pitfalls, ICWSM '14: Proceedings of the 8th International AAAI Conference on Weblogs and Social Media, pp.504-514, 2014.

X. Wu and X. Zhang, Les auteurs Patrice Bertail Patrice Bertail est Professeur de mathématiques (section 26) à l'université Paris-Ouest-Nanterre-La Défense et Professeur associé à Télécom ParisTech, IMT (Institut Mines-Télécom). Ses thèmes de recherche portent essentiellement sur les probabilités et la statistique non-paramétrique, avec des travaux notamment sur les méthodes de ré-échantillonnage, les valeurs extrêmes, les bornes exponentielles en apprentissage, en indépendant ou pour des chaînes de Markov, Automated inference on Criminality using Face Images, 2016.

D. David-bounie, . Bounie, and . Professeur, Il effectue ses travaux de recherche dans les domaines de l'économie avec un intérêt pour l'usage des méthodes quantitatives (économétrie, statistique appliquée, science des données), et s'intéresse en particulier à la manière dont les technologies numériques transforment le secteur financier (paiements numériques, blockchain, crypto-monnaies, intelligence artificielle), Responsable du département sciences économiques et sociales de Télécom ParisTech, 2018.

, Il effectue ses travaux de recherche en mathématiques appliquées au sein du Laboratoire LTCI de Télécom ParisTech, Ses thématiques de recherche se situent principalement dans les domaines de l'apprentissage statistique, des probabilités et des statistiques. Il est responsable du Mastère Spécialisé® « Big Data » à Télécom ParisTech et a été titulaire de la chaire industrielle « Machine Learning for Big Data, 2013.

P. Patrick-waelbroeck, Il effectue ses travaux de recherche en économie industrielle, économie de l'innovation, économie de l'internet, microéconométrie appliquée au sein de l'Institut Interdisciplinaire de l'Innovation (I3), laboratoire commun de Télécom ParisTech, Mines ParisTech, l'Ecole Polytechnique et du CNRS. Il est membre fondateur de la chaire de l'IMT « Valeurs et Politiques des Informations Personnelles, 2013.