I. Berkes, L. Horváth, and P. Kokoszka, GARCH processes: structure and estimation, Bernoulli, vol.9, issue.2, pp.201-227, 2003.

K. Bhaskaran, A. Gasparrini, S. Hajat, L. Smeeth, and B. Armstrong, Time series regression studies in environmental epidemiology, International journal of epidemiology, p.92, 2013.

T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, J. Econometrics, vol.31, pp.307-327, 1986.

T. Bollerslev, Technical report, CREATES Research Paper, 2008.

P. Bougerol and N. Picard, Stationarity of garch processes and of some nonnegative time series, J. Econometrics, vol.52, pp.90067-90069, 1992.

. Dr-cox, Statistical analysis of time-series: some recent developments, Scand. J. Statist, vol.8, issue.2, pp.93-115, 1981.

A. Richard, . Davis, Y. Dunsmuir, and . Wang, Modeling time series of count data, STATISTICS TEXTBOOKS AND MONOGRAPHS, vol.158, pp.63-114, 1999.

R. Douc, F. Roueff, and T. Sim, Handy sufficient conditions for the convergence of the maximum likelihood estimator in observation-driven models, Lithuanian Mathematical Journal, vol.55, issue.3, pp.367-392, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01254984

R. Ferland, A. Latour, and D. Oraichi, Integer-valued GARCH process, J. Time Ser. Anal, vol.27, issue.6, pp.923-942, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00319793

K. Fokianos and D. Tjøstheim, Log-linear poisson autoregression, J. of Multivariate Analysis, vol.102, issue.3, pp.563-578, 2011.

C. Francq and J. Zakoian, Maximum likelihood estimation of pure garch and arma-garch processes, Bernoulli, vol.10, issue.4, pp.605-637, 2004.

C. Francq and J. Zako¨?anzako¨?an, A tour in the asymptotic theory of garch estimation. Handbook of Financial Time Series, pp.85-111, 2009.

C. Francq and J. Zakoian, GARCH models: structure, statistical inference and financial applications, 2011.

. Ar-ives, . Dennis, S. R. Cottingham, and . Carpenter, Estimating community stability and ecological interactions from time-series data, Ecological monographs, vol.73, issue.2, pp.301-330, 2003.

B. G. Leroux, Maximum-likelihood estimation for hidden Markov models, Stoch. Proc. Appl, vol.40, pp.127-143, 1992.

R. Liesenfeld and J. Richard, Univariate and multivariate stochastic volatility models: estimation and diagnostics, Journal of empirical finance, vol.10, issue.4, pp.505-531, 2003.

M. Alexander and . Lindner, Stationarity, mixing, distributional properties and moments of garch (p, q)-processes. In Handbook of financial time series, pp.43-69, 2009.

S. Robert, . Pindyck, and . Daniel-l-rubinfeld, Econometric models and economic forecasts, vol.4, 1998.

T. Hviid-rydberg and N. Shephard, Dynamics of trade-by-trade price movements: decomposition and models, Journal of Financial Econometrics, vol.1, issue.1, pp.2-25, 2003.

T. Sim, Maximum likelihood estimation in partially observed Markov models with applications to time series of counts. Theses, Télécom ParisTech, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01458087

T. Sim, R. Douc, and F. Roueff, Generalorder observation-driven models: ergodicity and consistency of the maximum likelihood estimator, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01383554

D. Straumann and T. Mikosch, Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach, 2007.

D. Tjøstheim, Count Time Series with Observation-Driven Autoregressive Parameter Dynamics. Handbook of Discrete-Valued Time Series, 2015.

L. Scott and . Zeger, A regression model for time series of counts, Biometrika, vol.75, issue.4, pp.621-629, 1988.

F. Zhu, A negative binomial integer-valued GARCH model, J. Time Series Anal, vol.32, issue.1, pp.54-67, 2011.