A. Agosto, G. Cavaliere, D. Kristensen, and A. Rahbek, Modeling corporate defaults: Poisson autoregressions with exogenous covariates (parx), Journal of Empirical Finance, vol.38, pp.640-663, 2016.

I. Berkes, L. Horváth, and P. Kokoszka, GARCH processes: structure and estimation, Bernoulli, vol.9, issue.2, pp.201-227, 2003.

K. Bhaskaran, A. Gasparrini, S. Hajat, L. Smeeth, and B. Armstrong, Time series regression studies in environmental epidemiology, International journal of epidemiology, p.92, 2013.

T. Bollerslev, Technical report, CREATES Research Paper, 2008.

P. Bougerol and N. Picard, Stationarity of garch processes and of some nonnegative time series, J. Econometrics, vol.52, pp.90067-90069, 1992.

V. Christou and K. Fokianos, Estimation and testing linearity for non-linear mixed Poisson autoregressions. Electron, J. Stat, vol.9, issue.1, pp.1357-1377, 2015.

V. Christou and K. Fokianos, On count time series prediction, Journal of Statistical Computation and Simulation, vol.85, issue.2, pp.357-373, 2015.

. Dr-cox, Statistical analysis of time-series: some recent developments, Scand. J. Statist, vol.8, issue.2, pp.93-115, 1981.

Y. Cui and F. Zhu, A new bivariate integer-valued garch model allowing for negative cross-correlation, TEST, vol.27, issue.2, pp.428-452, 2018.

A. Richard, . Davis, Y. Dunsmuir, and . Wang, Modeling time series of count data. Statistics textbooks and monographs, vol.158, pp.63-114, 1999.

R. Douc, F. Roueff, and T. Sim, Handy sufficient conditions for the convergence of the maximum likelihood estimator in observation-driven models, Lithuanian Mathematical Journal, vol.55, issue.3, pp.367-392, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01078073

R. Ferland, A. Latour, and D. Oraichi, Integer-valued GARCH process, J. Time Ser. Anal, vol.27, issue.6, pp.923-942, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00319793

K. Fokianos and D. Tjøstheim, Log-linear poisson autoregression, J. of Multivariate Analysis, vol.102, issue.3, pp.563-578, 2011.

C. Francq and J. Zakoian, Maximum likelihood estimation of pure garch and arma-garch processes, Bernoulli, vol.10, issue.4, pp.605-637, 2004.

C. Francq and J. Zakoïan, A tour in the asymptotic theory of garch estimation. Handbook of Financial Time Series, pp.85-111, 2009.

C. Francq and J. Zakoian, GARCH models: structure, statistical inference and financial applications, 2011.

T. Hamadeh and J. Zakoïan, Asymptotic properties of LS and QML estimators for a class of nonlinear GARCH processes, J. Statist. Plann. Inference, vol.141, issue.1, pp.488-507, 2011.

E. J. Hannan and M. Deistler, The statistical theory of linear systems, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), vol.70, 2012.

. Ar-ives, . Dennis, S. R. Cottingham, and . Carpenter, Estimating community stability and ecological interactions from time-series data, Ecological monographs, vol.73, issue.2, pp.301-330, 2003.

R. Liesenfeld and J. Richard, Univariate and multivariate stochastic volatility models: estimation and diagnostics, Journal of empirical finance, vol.10, issue.4, pp.505-531, 2003.

M. Alexander and . Lindner, Stationarity, mixing, distributional properties and moments of garch (p, q)-processes. In Handbook of financial time series, pp.43-69, 2009.

C. C. Macduffee, The Theory of Matrices, 1933.

S. Robert, . Pindyck, and . Daniel-l-rubinfeld, Econometric models and economic forecasts, vol.4, 1998.

T. Hviid-rydberg and N. Shephard, Dynamics of trade-by-trade price movements: decomposition and models, Journal of Financial Econometrics, vol.1, issue.1, pp.2-25, 2003.

R. B. Silva and W. Barreto-souza, Flexible and robust mixed poisson ingarch models, Journal of Time Series Analysis, vol.40, issue.5, pp.788-814, 2019.

T. Sim, Maximum likelihood estimation in partially observed Markov models with applications to time series of counts. Theses, Télécom ParisTech, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01458087

T. Sim, R. Douc, and F. Roueff, Generalorder observation-driven models: ergodicity and consistency of the maximum likelihood estimator, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01383554

C. Wang, H. Liu, J. Yao, R. A. Davis, and W. Li, Self-excited threshold poisson autoregression, Journal of the American Statistical Association, vol.109, issue.506, pp.777-787, 2014.

L. Scott and . Zeger, A regression model for time series of counts, Biometrika, vol.75, issue.4, pp.621-629, 1988.

F. Zhu, A negative binomial integer-valued GARCH model, J. Time Series Anal, vol.32, issue.1, pp.54-67, 2011.

F. Zhu, Modeling time series of counts with COM-Poisson INGARCH models, Math. Comput. Modelling, vol.56, issue.9, pp.191-203, 2012.

F. Zhu, Zero-inflated Poisson and negative binomial integervalued GARCH models, J. Statist. Plann. Inference, vol.142, issue.4, pp.826-839, 2012.