T. Agarwal, R. Graepel, S. Herbrich, D. Har-peled, and . Roth, Generalization bounds for the area under the ROC curve, Journal of Machine Learning Research, vol.6, pp.393-425, 2005.

P. Bartlett, M. Jordan, and J. Mcauliffe, Convexity, classification, and risk bounds, Journal of the American Statistical Association, vol.101, issue.473, pp.138-156, 2006.

S. Boucheron, O. Bousquet, and G. Lugosi, Theory of classification: A survey of some recent advances, ESAIM: Probability and Statistics, vol.9, pp.323-375, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00017923

L. Cavalier, Nonparametric estimation of regression level sets, Statistics, vol.29, pp.131-160, 1997.

S. Clémençon, G. Lugosi, and N. Vayatis, Ranking and scoring using empirical risk minimization, Proceedings of COLT 2005, vol.3559, pp.1-15, 2005.

S. Clémençon, G. Lugosi, and N. Vayatis, Ranking and empirical risk minimization of U-statistics. The Annals of Statistics

C. Cortes and M. Mohri, Auc optimization vs. error rate minimization, Advances in Neural Information Processing Systems 16, 2004.

D. Cossock and T. Zhang, Statistical analysis of Bayes optimal subset ranking, 2006.

L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition, 1996.

L. E. Dodd and M. S. Pepe, Partial AUC estimation and regression, Biometrics, vol.59, issue.3, pp.614-623, 2003.

R. M. Dudley, Uniform Central Limit Theorems, 1999.

V. Dupac and J. Hájek, Asymptotic normality of simple linear rank statistics under alternatives ii, The Annals of Mathematical Statistics, issue.6, pp.1992-2017, 1969.

J. P. Egan, Signal Detection Theory and ROC Analysis, 1975.

Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer, An efficient boosting algorithm for combining preferences, Journal of Machine Learning Research, vol.4, 2003.

J. Hájek and Z. Sidák, Theory of Rank Tests, 1967.

J. A. Hanley and J. Mcneil, The meaning and use of the area under a ROC curve, Radiology, issue.143, pp.29-36, 1982.

K. Järvelin and J. Kekäläinen, IR evaluation methods for retrieving highly relevant documents, Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.41-48, 2000.

H. L. Koul, Weighted Empirical Processes in Dynamic Nonlinear Models, Lecture Notes in Statistics, vol.166, 2002.

H. L. Koul, Some convergence theorems for ranks and weighted empirical cumulatives, The Annals of Mathematical Statistics, issue.41, pp.1768-1773, 1970.

H. L. Koul and J. R. Staudte, Weak convergence of weighted empirical cumulatives based on ranks, The Annals of Mathematical Statistics, issue.43, pp.823-841, 1972.

P. Li, C. Burges, and Q. Wu, Learning to rank using classification and gradient boosting, 2007.

G. Lugosi, Pattern classification and learning theory, Principles of Nonparametric Learning, pp.1-56

E. Mammen and A. B. Tsybakov, Smooth discrimination analysis, Annals of Statistics, vol.27, issue.6, pp.1808-1829, 1999.

P. Massart, Concentration Inequalities and Model Selection, Lecture Notes in Mathematics, 2006.

P. Massart and E. Nédélec, Risk bounds for statistical learning, Annals of Statistics, vol.34, issue.5, 2006.

A. Papoulis, Probability, Random Variables, and Stochastic Processes, 1965.

C. Rudin, Ranking with a P-Norm Push, Proceedings of COLT 2006, vol.4005, pp.589-604, 2006.

C. Rudin, C. Cortes, M. Mohri, and R. E. Schapire, Margin-based ranking and boosting meet in the middle, Proceedings of COLT 2005, vol.3559, pp.63-78, 2005.

C. Scott, Performance measures for Neyman-Pearson classification, 2005.

C. Scott and M. Davenport, Regression level set estimation via cost-sensitive classification, IEEE Transactions on Signal Processing, 2006.

C. Scott and R. Nowak, A Neyman-Pearson approach to statistical learning, IEEE Transactions on Information Theory, vol.51, issue.11, pp.3806-3819, 2005.

C. Scott and R. Nowak, Learning minimum volume sets, Journal of Machine Learning Research, vol.7, pp.665-704, 2006.

I. Steinwart, D. Hush, and C. Scovel, A classification framework for anomaly detection, Journal of Machine Learning Research, vol.6, pp.211-232, 2005.

J. Taylor and R. Tibshirani, A tail strength measure for assessing the overall univariate significance in a dataset, Biostatistics, vol.7, issue.2, pp.167-181, 2006.

A. Tsybakov, Optimal aggregation of classifiers in statistical learning, Annals of Statistics, vol.32, issue.1, pp.135-166, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00102142

A. Tsybakov, On nonparametric estimation of density level sets, Annals of Statistics, vol.25, issue.3, pp.948-969, 1997.

S. Van-de-geer, Empirical Processes in M-Estimation, 2000.

A. Van-de and . Vaart, Asymptotic Statistics, 1998.

H. L. Van-trees, Detection, Estimation, and Modulation Theory, Part I, 1968.

R. Vert and J. Vert, Consistency and convergence rates of one-class SVMs and related algorithms, Journal of Machine Learning Research, vol.7, pp.817-854, 2006.

R. Willett and R. Nowak, Minimax optimal level set estimation, 2006.