S. Agarwal, T. Graepel, R. Herbrich, S. Har-peled, R. et al., Generalization bounds for the area under the ROC curve, JMLR, vol.6, pp.393-425, 2005.

N. Baskiotis, S. Clémençon, M. Depecker, and N. Vayatis, R-implementation of the TreeRank algorithm. Submitted for publication, 2009.

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees, 1984.

S. Clémençon and J. Jakubowicz, Scoring anomalies: a M-estimation formulation, Proceedings of AISTATS, 2013.

S. Clémençon and N. Vayatis, Tree-based ranking methods, IEEE Trans. Inf. Theory, vol.55, issue.9, pp.4316-4336, 2009.

S. Clémençon, G. Lugosi, and N. Vayatis, Ranking and empirical risk minimization of U-statistics, Ann. Stat, vol.36, issue.2, pp.844-874, 2008.

S. Clémençon, M. Depecker, and N. Vayatis, Adaptive partitioning schemes for bipartite ranking, Machine Learning, vol.43, pp.31-69, 2011.

S. Clémençon, M. Depecker, and N. Vayatis, An empirical comparison of learning algorithms for nonparametric scoring: the treerank algorithm and other methods, Patt. Analys. Appl, 2012.

S. Clémençon, M. Depecker, and N. Vayatis, Ranking Forests, J. Mach. Learn. Res, 2013.

J. Duchi, L. Mackey, J. , and M. , On the consistency of ranking algorithms, Proceedings of ICML, 2010.

J. H. Einmahl and D. M. Mason, Generalized quantile process, Ann. Stat, vol.20, pp.1062-1078, 1992.

T. Fawcett, An Introduction to ROC Analysis, Letters in Pattern Recognition, vol.27, pp.861-874, 2006.

Y. Freund, R. Iyer, R. Schapire, and Y. Singer, An efficient boosting algorithm for combining preferences, JMLR, vol.4, pp.933-969, 2003.

J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning, 2009.

R. Herbrich, T. Graepel, and K. Obermayer, Advances in Large Margin Classifiers, chapter Large margin rank boundaries for ordinal regression, pp.115-132, 2000.

T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Boberg, and T. Salakoski, Learning to rank with pairwise regularized least-squares, Proceedings of SIGIR, pp.27-33, 2007.

W. Polonik, Minimum volume sets and generalized quantile processes, Stochastic Processes and their Applications, vol.69, pp.1-24, 1997.

A. Rakotomamonjy, Optimizing Area Under Roc Curve with SVMs, Proceedings of the First Workshop on ROC Analysis in AI, 2004.

C. Rudin, C. Cortes, M. Mohri, and R. E. Schapire, Margin-based ranking and boosting meet in the middle, Proceedings of COLT, 2005.

B. Schölkopf, J. C. Platt, J. Shawe-taylor, A. Smola, and R. Williamson, Estimating the Support of a HighDimensional Distribution, Neural Computation, vol.13, issue.7, pp.1443-1471, 2001.

C. Scott and M. Davenport, Regression level set estimation via cost-sensitive classification, IEEE Transactions on Signal Processing, vol.55, 2007.

C. Scott and R. Nowak, Learning minimum volume sets, JMLR, vol.7, pp.665-704, 2006.

J. Song, Cdmc2013 intrusion detection dataset, 2013.

I. Steinwart, D. Hush, and C. Scovel, A classification framework for anomaly detection, J. Machine Learning Research, vol.6, pp.211-232, 2005.

R. Vert and J. Vert, Consistency and convergence rates of one-class svms and related algorithms, JMLR, vol.7, pp.817-854, 2006.

K. Viswanathan, L. Choudur, V. Talwar, C. Wang, G. Macdonald et al., Ranking anomalies in data centers, Network Operations and System Management, pp.79-87, 2012.