A. Soufiani, . Hossein, . Chen, . William, . Parkes et al., Generalized method-of-moments for rank aggregation, Advances in Neural Information Processing Systems, vol.26, pp.2706-2714, 2013.

. Busa-fekete, . Robert, E. Huellermeier, . Szrnyi, and . Balzs, Preference-based rank elicitation using statistical models: The case of mallows, Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp.1071-1079, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01079369

. Clémençon, . Stéphan, J. Jakubowicz, and E. Sibony, Multiresolution analysis of incomplete rankings, 2014.

D. E. Critchlow, Metric Methods for Analyzing Partially Ranked Data, Lecture Notes in Statistics, vol.34, 1985.

P. Diaconis, A generalization of spectral analysis with application to ranked data, The Annals of Statistics, vol.17, issue.3, pp.949-979, 1989.

P. Diaconis, Group representations in probability and statistics, 1988.

R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee, Comparing partial rankings, SIAM J. Discrete Mathematics, vol.20, issue.3, pp.628-648, 2006.

M. A. Fligner and J. S. Verducci, Distance based ranking models, JRSS Series B (Methodological), vol.48, issue.3, pp.359-369, 1986.

J. Guiver and E. Snelson, Bayesian inference for plackett-luce ranking models, ICML, 2009.

J. Huang and C. Guestrin, Riffled independence for ranked data, Proceedings of NIPS'09, 2009.

J. Huang, C. Guestrin, and L. Guibas, Fourier theoretic probabilistic inference over permutations, JMLR, vol.10, pp.997-1070, 2009.

J. Huang, A. Kapoor, and C. Guestrin, Riffled independence for efficient inference with partial ranking, Journal of Artificial Intelligence, vol.44, pp.491-532, 2012.

E. Hüllermeier, J. Fürnkranz, W. Cheng, and K. Brinker, Label ranking by learning pairwise preferences, Artificial Intelligence, vol.172, pp.1897-1917, 2008.

D. R. Hunter, MM algorithms for generalized BradleyTerry models, The Annals of Statistics, vol.32, pp.384-406, 2004.

E. Irurozki, B. Calvo, and J. Lozano, Learning probability distributions over permutations by means of Fourier coefficients. Advances in Artificial Intelligence, pp.186-191, 2011.

S. Jagabathula and D. Shah, Inferring Rankings Using Constrained Sensing, IEEE Transactions on Information Theory, vol.57, issue.11, pp.7288-7306, 2011.

R. Kakarala, A signal processing approach to Fourier analysis of ranking data: the importance of phase, IEEE Transactions on Signal Processing, pp.1-10, 2011.

R. Kakarala, Interpreting the phase spectrum in Fourier Analysis of partial ranking data, Advances in Numerical Analysis, 2012.

S. Kitaev, Patterns in Permutations and Words, 2011.

R. Kondor, . Barbosa, and S. Marconi, Ranking with kernels in Fourier space, Proceedings of COLT'10, pp.451-463, 2010.

R. Kondor and W. Dempsey, Multiresolution analysis on the symmetric group, Neural Information Processing Systems 25, 2012.

G. Lebanon and Y. Mao, Non-parametric modeling of partially ranked data, JMLR, vol.9, pp.2401-2429, 2008.

G. Lebanon and J. Lafferty, Cranking: Combining rankings using conditional probability models on permutations, Proceedings of the 19th International Conference on Machine Learning, pp.363-370, 2002.

X. Liqun, A multistage ranking model, Psychometrika, vol.65, issue.2, pp.217-231, 2000.

T. Lu and C. Boutilier, Learning mallows models with pairwise preferences, ICML, pp.145-152, 2011.

R. D. Luce, Individual Choice Behavior, 1959.

C. L. Mallows, Non-null ranking models, Biometrika, vol.44, issue.1-2, pp.114-130, 1957.

C. Meek and M. Meila, Recursive inversion models for permutations, Advances in Neural Information Processing Systems, vol.27, pp.631-639, 2014.

R. L. Plackett, The analysis of permutations, Applied Statistics, vol.2, issue.24, pp.193-202, 1975.

A. Rajkumar and S. Agarwal, A statistical convergence perspective of algorithms for rank aggregation from pairwise data, Proceedings of the 31st International Conference on Machine Learning, 2014.

. Sun, . Mingxuan, G. Lebanon, and P. Kidwell, Estimating probabilities in recommendation systems, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.61, issue.3, pp.471-492, 2012.

F. Wauthier, M. Jordan, and N. Jojic, Efficient ranking from pairwise comparisons, Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp.109-117, 2013.