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Abstract—Irrigation in agriculture is a major source of elec-
tricity demand flexibility that goes largely unexploited. In this
paper we provide a model and a solution to the problem of
scheduling irrigation time to minimize electricity costs while
satisfying crop water requirements. We propose to apply rebates
(aimed to consume renewable energy surplus) that were tradi-
tionally offered to the industrial sector, in the agricultural one.
Furthermore an architecture is proposed to overcome some of
the limitations that can hinder the adoption of such rebates. The
architecture integrates scheduling techniques best studied in the
networking literature.

Numerical analysis is performed to validate our model and
evaluate the proposed scheduling mechanisms, based on real data
from a soybean producer and from the corresponding electricity
operator. Results indicate that significant cost reductions can be
obtained, specially if the rebates are considered.

Index Terms—TFlexibility, Smart Grids, Irrigation, Energy
Management

I. INTRODUCTION

Nowadays we are facing a global effort to move away from
carbon-based energy to renewable energy resources. This is
evidenced in programs such as Europe’s 2050 [1]. The fact that
power grids were not designed to support the large amount of
injection in the low voltage system is hindering the massive
adoption of distributed energy resources (DER).

One of the most popular strategies for integrating DER is
to dynamically exploit demand flexibility through Demand
Response (DR) programs. These were initially reserved for
big industrial players [2], but thanks to the application of
Information and communication technologies under the smart
grid paradigm, they have been recently extended to smaller
commercial or residential consumers. One prominent example
is the vast literature in Local Energy Markets [3], [4], [5],
which seek to incentivize the consumption of locally produced
energy [6].

In this paper we deal with a third, mostly unstudied, case:
demand response for medium consumers such as farmers with
specific necessities, e.g. satisfying crop water requirements.

Indeed, participating in flexibility programs is particularly
interesting for farmers, for whom the cost of electricity used
in irrigation systems can account for up to 30% of the
total production costs. Moreover, irrigation is mostly done
without automatic control, or without considering both real
time irrigation requirements and energy prices. This is an
important problem, and several novel solution approaches have

been considered [7]'. Furthermore, it has also been shown
that irrigation increases crop yield, even in countries with
temperate climates [8].

Irrigation can be an important source of flexibility [9] and
crop productivity depends significantly on the structure of
irrigation cycles [10]. We point out that the flexibility provided
by irrigation is of a special kind: the peak of inflexible load
does not occur every single day, but is concentrated on some
particular weeks of the crop growth cycle. For this reason,
tariffs such as Time-of-Use with intra-day price are not well
adapted.

In some countries with high penetration of renewables, the
concept of rebates has been introduced. It is a discount in the
electricity price to incentivize consumption when there is a
surplus of generation.

The goal of this study is to investigate the extent of the
benefits that can be obtained by exploiting flexibility in these
cases. In doing so, we bridge the real practices in agriculture
with innovative energy market models in an effort to fully
utilize latent flexibility.

The idea of decreasing the usage of electricity in irrigation
is not new [11], [12]. In [11], the authors optimize the water
pressure of the irrigation system, while [12] considers the
flexible operation of an irrigation system. None of these studies
takes into account either the benefits of exploiting flexibility
by the electricity operator nor the reduction in the electricity
cost by properly utilizing electricity tariffs.

The contributions of this paper are summarized as follows:

o We model the energy management problem with irriga-
tion requirements as constraints and provide and algo-
rithm to solve it. Evaluation is conducted on real data,
achieving significant reductions in the electricity cost
incurred by farmers while keeping the optimal level of
productivity.

o« We evaluate the effect of dynamic rebates based on
renewable energy surplus in irrigation scheduling. It is
shown that these can be beneficial to both the farmers
and the utility.

o Scheduling techniques are proposed to solve the problem
of assigning a limited amount of surplus to an increasing
number of participants in a fair manner.

Uhttp://www.irricontrol.com.uy/Irricontrol



NOMENCLATURE

In this section we introduce the nomenclature used for
formulating the model in the next section.

Oy Root zone depletion (RZD) (mm)

G, Effective rain (mm)

H, Effective evapotranspiration (mm)

F Nominal evapotranspiration (mm)

Q¢ Water content in the ground (WCG) (mm)
n Efficiency of the irrigation system

0 Water supplied per irrigation time (mm/h)
Sy Irrigation time (h)

Ji Permanent Wilting Point (PWP) (mm)

L Tiredness fraction

K; Total available water (TAW) (mm)

1; Field capacity (FG) (mm)

N Level of hydric stress (mm)

M, Readily available water (RAW) (mm)

[x]" Positive part of x

D Number of days considered

[N] The natural numbers smaller than N:
{0,1,...,N -1}

II. PROBLEM DEFINITION
A. Crop Model

A task of vital importance in Agriculture is the irrigation of
fields, due to its positive impact on yields. The water supplied
to the crops should be enough to maximize the production
but no more than that. This turns out to be a difficult task as
the water requirement of a crop varies depending on the stage
of growth. Climate conditions also play an important role in
determining these requirements.

A plant absorbs most of its water requirements from its roots
at a precise depth that varies with plant growth. The amount
of water available in the ground varies between the maximum
capacity of the field to retain water (FC) and the permanent
wilting point (PWP) at which the plant dies. The total available
water within these margins is (TAW), but the plant can only
absorb a fraction that is known as readily available water
(RAW, Equation (2)). These values are depicted in Figure 1.

The Root Zone Depletion (RZD, Equation (8)) is the level
of water that has been depleted from the field capacity and is
no longer available for the plant. It depends on its previous
value, minus all the irrigation (U, Equation (4)), minus all the
rain (G) plus the evaporation in the soil and the transpiration of
the plant. These last two phenomena are represented together
as the evapotranspiration (H, Equation (6)). The evapotran-
spiration is piece-wise linear and has two levels depending
on the stress of the ground (percentage of RZD with respect
to the PWP) [13]. To keep the crop from under-performing
(i.e., producing less kilograms per hectare), the Root Zone
Depletion needs to be smaller than the readily available water
level. Otherwise, the water content in the ground would not
be at a level available for the plant to easily reach, causing
hydric stress and consequently yield reduction. In Figure 1,
two different values of RZD and the corresponding WCG are
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Fig. 1. Illustration of the different parameters in the model.

represented. WCG values are shown as the fully grey shaded
areas increasing upwards and the rectangle with the brick
pattern represent the level below which water is not easily
available for the plant. The red value of RZD is larger than
the RAW value, therefore some productivity will be loss. On
the contrary, the green RZD value is smaller than the RAW
level and there is no loss in production. An equivalent way of
stating the problem, which will be used later, is the following:
the water content in the ground (WCG, Equation (9)) which
is the amount that is left after removing from the FC the
water that has been depleted (RZD), has to be larger than
the “refilling point”, i.e, the amount of water that is left after
removing from the FC the RAW. We denote this latter quantity
as the level of hydric stress (N, Equation (3)) or as the refilling
point.

Kiy=I1L—J; (D
My = LK, 2
Ny =1 — M, 3
U =nxpxS 4
Hy = Fy &)
. [Qi—1+ Gy + U — Ji
H; = F; min{1, (=L } (6)
0.,=0 %
Oy =041 — Gy + H, — U] " (3
Qi=1; — Oy )

In Equation (4), S; denotes the amount of hours used for
irrigation in day ¢. For convenience, most of the time we will
use, instead Y35, the percentage of the time that the irrigation
system was working during the j hour of the day ¢. It naturally
holds that Zj Y =5,

B. Electricity tariffs

First, we consider a three-period Time of Use (ToU) tariff
as described in Equation (10). There, p;, ., pn denote the
low, medium and high prices (correspondingly), P is the



power (kW) consumed by the pump used for irrigation and
T, T, Tr, C [24] correspond to the hours in which each of
the rates is available.

Ppl7 if ] € T17V2
C1(Yi;) = Ppr, it j € T, Vi (10)
Ppp, if jeTy,Vi

Second, we consider a family of rebates on top of the three
period ToU described by Equation (10), designed to incen-
tivize consumption whenever there is surplus of generation.
Equation (11) defines these rebates, which we will denote
Opportunity offers (OO) in the rest of the paper.

Ppy, if Vi <oy, €T,V
PBipi, if Yy > oy, €T,V
Ppm, if }/ij < QGj, j € T, Vi
Y;
Yi

Ca(Yy;) = (1)

PBypm, if Y >y, j €Ty, Vi
Pph7 if 07 S Qg .] € Thvvz'
PBrpn, if Yi; > oy, j€Th, Vi

Opportunity offers work as follows: for a given hour and
day (4, ), if the consumption Y;; is greater than a threshold
«;; that emulates average past consumption, the cost to be
paid is a fraction g € (0, 1] of the original cost. If no OO is
available, cv;; can be set to 1, which yields the same result. The
variables P, p;, pm, Ph, 11, T, T}, have the same interpretation
as in Equation (10).

C. Optimization Problem

The optimization problem defined in Equation (12) seeks to
find an irrigation assignment guaranteeing the required level
of water in the ground and minimizing the cost of irrigation.
The two different tariffs (Equations (10),(11), represented by
Cp) will be used as cost functions.

min Y Co(Yy) (12a)
Y 4
s.t. Ot < Mt, te [N], (12b)
> V=8, te[N], (12¢)
J
Y—tj € [01 1]7 te [N}a .7 € [24] (12d)

Observe that constraint 12b is equivalent to {Q; > N},
The function O;: [0, 1]***P — R is not differentiable and, for
some combinations of the parameters, the set {O; < M.} is
not convex. Figure 2 depicts one such case. This motivated the
development of an algorithm to solve the irrigation scheduling
problem, as presented in the next section.

III. PROPOSED SOLUTION
A. Algorithm

In this section, we present an algorithm to solve the op-
timization problem (12). A key idea of our solution is to

Uo

Fig. 2. The set of points satisfying O; < M for some combination of
parameters. Pixels in white represent points in the set and in black, outside.
This set is clearly non-convex.

notice that, to satisfy each of the constraints "O; < M;”,
only variables Y;; with 4 < ¢ could be used. That is, only the
variables Y7, affect Oy, while for the constraint Oy < M>,
only Yy;,Y5; can be used, etc. Therefore, we can make the
problem feasible by using only those variables.

With that observation in mind, the algorithm is fairly simple,
namely: consume the least amount of water to satisfy all the
constraints and try to use the variables with the lowest cost
associated with them.

Algorithm 1 Optimization Algorithm
Imput: F, G, H,J, K, L, C, ¢
Output: Y
}/ij 0, V?,]
1: fori=1to 7T do
2: while O; > M, do

3: l, k < select best variable % decrease O with least cost
4 Yig < Yip + €

5: update O;

6 end while

7: end for

8: return Y

To decide which variable should be used, Algorithm 2 was
employed.

B. Opportunity assignation

One of the aims Opportunity offers were created for is to
sell the surplus of renewable generation.

As they are implemented now, a massive adoption of these
tariffs could result in a peak of consumption greater than the
original surplus. If such a case arises, more expensive units
will have to be dispatched to satisfy the new demand, resulting
in additional costs and a negative environmental impact.

In this subsection we propose four mechanisms inspired
from the rich literature in scheduling to allocate the surplus of
renewable energy without exceeding the available quantities.



Algorithm 2 Selecting the best variable
Input: £ G, H, J, K, L, t,
Output: z, w

Z,W, Oy < —1,—1,0

1: for i =1to ¢t do

2. for j=1to 24 do

3 d <+ aot (Numerically estimated)
4 1fY”§1—eandd>0then

5 if a;; <1 and o, =1 then
6: 2, W, Oy 1, 7,d

7 else if o;; = 1 and o, < 1 then
8 do nothing
13 else Oz > d th

| M e, ~ ary
11: zw,82w<—z J,d
12: end if
13: end if
14: end if
15:  end for
16: end for

17: return (z,w)

All the mechanisms follow the same time structure. For a
given opportunity offer occurring at time ¢ of day d, interest
of buying from the consumers will be collected the day
before (t,d — 1) by the scheduler manager (SM). Intention
to participate in an offer is expressed by the different partici-
pants as a pair (¢*(¢,d), c'(t,d)) where q(t,d) represents the
consumption in kWh that the participant is requiring to buy
and c'(t,d) is the cost (estimated by each participant) of not
irrigating at all during the time ¢ of day d.

Given the offers, the SM decides how much of the requested
quantity each participant is allowed and communicates this
data back to them. They are then free to reschedule their
consumption as they see fit with the new change in tariff. It is
important to notice that losing participants are not forbidden
to irrigate during hour ¢ of day d. Although this might
sound counter-intuitive, we are assuming that the proposed
mechanism replaces the assignment of the opportunity offers
but leaves the basic tariff structure unchanged and therefore,
they are always allowed to use it.

The four evaluated mechanisms, namely: Least Served First
(LSF), Most valuable first (MVF), Proportional (PR) and
Fixed prioirty (FP), differ in how the SM assigns the op-
portunity offers, as follows. In LSF, the Scheduling Manager
maintains an historic record of the energy assigned to each
player in the past. Using this information, she sorts the
received offers and assigns all the requested energy to the first
participant. If there is any remaining surplus, it continues the
allocation following the created order. Tiebreaks are handled
arbitrarily. The second approach, Most valuable first, assigns
as much energy as possible to the player that reported the
highest cost ¢’(t,d), and if there is any remaining energy, it
continues with the second highest cost, etc. The Proportional

mechanism consists on distributing the available energy among
all participants, proportionally to their submitted offers. Fi-
nally, FP is a very simple mechanism included for comparison
purposes, in which there is a fixed order and energy is always
distributed according to the same order. Algorithm 3 describes
the common feature of the LSF, MVF and FP mechanisms.
Their difference lies in the SortUsingMechanism function
and how the permutation 7 is built. In Algorithm 3, a® is
the assigned quantity to player i. For the Proportional case,
the assigned quantity is a’ = w, where A(t, d) is the
available quantity of surplus, ¢*(¢,d) is the quantity asked by
the farmer 4, and C' = 3~ ¢/ (t,d).

Algorithm 3 Scheduling mechanism
O(tk, dj), Co(tk, dj)), ce (qN_
Input: A

Output: a°(ty,d;),...,a" "ty d;)
1: 7 < SortUsingMechanism([N])
m <+ 0
al + 0, [ € [N]
while A > 0 and i < N do
i+ w(m)
if ' (ty, d
at < ¢*
else
at +— A
end if
11: A<—A—qi(tk,dj)
122 m<+m+1
13: end while

14: return a’,a?,...,a

Input: (¢ Ytg,dj), N7 (b, dy))

;) > A then

R A AN A o

=4

N-1

IV. NUMERICAL ANALYSIS

In this section, using real data, we shall demonstrate the
benefits of implementing the proposed solutions.

We had access to real irrigation data from a soybean
producer in Uruguay. The dataset contains the irrigation profile
during 140 days, namely from 9th November 2017 to 28th
March 2018, as well as all the other parameters required by
the model®. The data corresponds to one irrigation pivot used
in a field of 75 hectares. The pump required to power the
pivot consumes 77kW. We assume that there are no associated
costs for starting or stopping the pump. Table I summarizes
the parameters used to instantiate the two cost functions except
for the thresholds «;;, which where estimated out of historical
data as the average consumption in the same day.

First, we evaluate the net benefits of using Algorithm
1, when the tariff structure remains unchanged, i.e., only
considering the three-tier ToU. Next, the benefits of including
the opportunity offers are measured. Finally, the different
mechanisms to assign such OOs are evaluated.

2Some of these had to be estimated using the temperature and rain data
during those days.



TABLE I
PARAMETERS OF C'1 AND Cs.
Variable | Value

D 2772

Pm 3.078

Ph 10.205

T {0, ..., 6}
Tm {7, ..., 17,22, 23}
T, {18, ..., 21}
P 71

Bi 04

Bm 04

Bh 1

A. Optimization algorithm using real data

Figure 3 depicts the evolution of the water content in the
ground (WCG) for that period, given the irrigation pattern fol-
lowed by the farmer. It can be seen that the WCG drops below
the level of hydric stress, implying that some performance
(in terms of kilograms per hectare) was lost. Moreover, the
farmer did not manage to fully avoid irrigation during peak
periods. Figure 4 shows the distribution of irrigation hours
along ToU price periods, where green, yellow and red stand
for low, medium and high prices, respectively.

200
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Fig. 3. Irrigation model on real data
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Fig. 4. Consumption across time of uses.

For the same dataset, Figure 5 represents the WCG evo-
Iution when using the irrigation schedule proposed by our
algorithm. Under this new irrigation strategy, the WCG is
always above the level of hydric stress and crop performance is
optimized. There are models that would allow us to quantify
the gains obtained by increasing the performance, but these
are outside the scope of this work. Finally, Figure 6 presents
the irrigation hours in comparison with the ToU prices for
our proposal. Observe that our irrigation strategy respects
the constraints imposed by plant water requirements while
avoiding the most expensive ToU period.

200 -
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Fig. 5. Algorithm maximizes TOU without taking into account opportunities.
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Fig. 6. Algorithm maximizes TOU without taking into account opportunities.
Consumption across time of uses.

Table II summarizes the numerical comparison between the
cases. Although our algorithm irrigates for a longer period
of time (to satisfy the problem constraints), it has an overall
decrease in the variable cost’.

B. Optimizing for Opportunity offers
From the real data on electricity consumption and produc-
tion surplus event, we obtained the «y; coefficients for the

3The cost of water for most farmers in Uruguay is negligible, particularly
when compared with electricity costs and performance losses. Therefore, an
increase in the irrigation time, and consequently in the water usage, does not
impact the overall irrigation costs.



TABLE 11
NUMERICAL COMPARISON WITHOUT OOs

Optimized | Irrigated Time (h) | Cost (UYU)
No 1163 324394
Yes 1323 (+13%) 289075 (-11%)

cost function Cy defined in Equation (11). As expected, during
most of the hours there were no surplus events, and thus no
OOs. Figure 7 depicts the hours at which the value of «;; was
less than 1, i.e., there was an active rebate. Sub-figure 7.A
depicts the consumption of energy with respect to the active
offers for the real past consumption. It should be observed that,
although the farmer did not plan her irrigation around these
rebates (as they are not currently available to farmers), there is
some natural overlap between the two. The middle and bottom
sub-figures (B and C) also depict the irrigation for those hours
with active OOs, but for our algorithm, using C; and C5 as the
cost functions, respectively. Naturally, optimizing using C as
the cost function increases the irrigation whenever there is a
surplus®.

Real data

A)
=] |

—_
1

[T

20-
N
é B) Algorithm optimized for C; —_— Y3
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3
o LU AT
S 0-
go C) Algorithm optimized for Co
N 1]
0 - Uy |_I

Hours with oportunity offers

Fig. 7. Consumption during the Opportunity offers for the three considered
cases.

The different costs of irrigation if Opportunity Offers were
available are presented in Table III. We observe that optimizing
for C7 or Cy uses the same irrigation time (and therefore
the same amount of water), but reductions are bigger: a 15%
reduction could be achieved in the costs if Opportunity offers
were to be allowed to farmers. This is beneficial for farmers,
because they decrease their costs, and also for the utility,
because they have extra means to consume the surplus of
renewable generation. This can foster the installation of new
renewable energy sources in the grid.

C. Evaluation of opportunity assignments

In the previous subsection we showed that offering dynamic
rebates to farmers can increase their profit and reduce the
amount of renewable energy that need to be curtailed. As
mentioned, offering this tariff to new actors can have an
associated drawback: if the new peak in demand is greater than

“To solve for Cy, we set ayj = 1, V4, j.

TABLE III
NUMERICAL COMPARISON WITH OOs

Optimizing | Irrigated Time (h) | Cost (UYU)

No 1163 301771
Cy 1323 (+13%) 268287 (-12%)
Cs 1323 (+13%) 261679 (-15%)

the original surplus, the utility company might suffer higher
costs than from just curtailing renewable energy sources.
To overcome this difficulty, we evaluate different scheduling
mechanisms that aim to assign precisely all the surplus.

To asses the behaviour of the different mechanisms in com-
bination with our algorithm, a synthetic dataset was created
from real data. Under the assumption that farmers that are
physically close experience similar weather conditions, we
took the data we already had and added a small random noise
to emulate spatial difference. For the OOs dataset, we used
the same periods (¢,d) as in the previous sections, yet now
we generated the amounts of surplus. In each of these dates, a
random quantity of excess of energy was considered in a way
that reveals the effects of the different mechanisms: too much
energy would satisfy all customers and the mechanisms would
be indistinguishable and the same would happen if there is no
surplus at all.

Figure 8 illustrates the results of running the different
scheduling mechanisms with 20 participants. Each bar plot
represents the relative gain of each player (cost with OOs
divided by cost without OOs). The number in the legend shows
the net cost of all the players averaged over all simulation
runs. We seek a mechanism that minimizes the total cost while
keeping the variance of different players small, i.e, maximizes
fairness.

As expected, the Fixed Priority technique was the most
unfair (highest variance), followed by the MVFE. The least total
welfare was obtained by Least Served First, closely followed
by MVE. Overall, Least Served First yielded the best fairness
and overall welfare.
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Fig. 8. Gains of farmers under different assignment techniques.

V. DISCUSSION AND FINAL REMARKS

We proposed an architecture and specific irrigation schedul-
ing and coordination mechanisms that enable to exploit elec-
tricity demand flexibility from irrigation and, at the same time,



minimize the farmers’ electricity costs. Indeed, the proposed
scheduler manages to reduce the cost of irrigation electricity
while keeping optimal levels of productivity, by exploiting
existing ToU tariffs.

Based on real data, we showed that producers do not irrigate
in an optimal way and they could greatly benefit from an
automatic scheduler, such as the one proposed in this study, in
order to boost their production and decrease their energy costs.
Moreover, there is a clear potential to exploit opportunity
offers, as shown by the decrease of cost in both instances
of the algorithm. We demonstrated that the biggest barrier
preventing the massive adoption of opportunity offers can be
circumvented with our proposed allocation mechanisms.

Consequently, our proposed irrigation scheduler and flexi-
bility allocation mechanisms increase the potential of the grid
to host renewable energy sources while reducing the electricity
costs in agriculture, which is of key economic relevance in
several countries.

We conclude by mentioning some potential improvements
that could be achieved through future work. First, the current
algorithm is deterministic and requires a forecast of the tem-
perature and precipitation to work with. A natural extension
is to pair it with a forecast and use Model Predictive Control
to correct the irrigation plan as the real information becomes
available. Second, although a Time of Use together with the
rebates can provide important incentives, further work should
be carried to understand whether a local energy market can
provide better results.
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