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Abstract. The success rate is the classical metric for evaluating the
performance of side-channel attacks. It is generally computed empirically
from measurements for a particular device or using simulations. Closed-
form expressions of success rate are desirable because they provide an
explicit functional dependence on relevant parameters such as number
of measurements and signal-to-noise ratio which help to understand the
e! ectiveness of a given attack and how one can mitigate its threat by
countermeasures. However, such closed-form expressions involve high-
dimensional complex statistical functions that are hard to estimate.

In this paper, we deÞne the success exponent (SE) of an arbitrary
side-channel distinguisher as the Þrst-order exponent of the success rate
as the number of measurements increases. Under fairly general assump-
tions such as soundness, we give a general simple formula for any arbi-
trary distinguisher and derive closed-form expressions of it for DoM, CPA,
MIA and the optimal distinguisher when the model is known (template
attack). For DoM and CPA our results are in line with the literature.
Experiments conÞrm that the theoretical closed-form expression of the
SE coincides with the empirically computed one, even for reasonably
small numbers of measurements. Finally, we highlight that our study
raises many new perspectives for comparing and evaluating side-channel
attacks, countermeasures and implementations.

Keywords: Side-Channel distinguisher áEvaluation metric áSuccess
rate áSuccess exponentáClosed-form expressions

1 Introduction

Side-channel attacks analyse physical leakage that is unintentionally emitted
during cryptographic operations in a device. This side-channel leakage is sta-
tistically dependent on intermediate processed values involving the secret key.
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It is then possible to retrieve the secret from the measured data by maximizing
some statistical distinguisher. In the past decade, many distinguishers have been
proposed: di! erence of means test [17] (DoM), Pearson correlation [4] (CPA),
mutual information [ 12] (MIA), etc. Such distinguishers have di! erent character-
istics and performances, depending on the implementation, measurement noise,
and assumed knowledge on how the device leaks.

To evaluate the performance of a given distinguisher for a limited number
of measurements, theaverage probability of successa.k.a. success rate(SR) is
the ideal and most common evaluation metric [30]. It provides everything one
needs to know about the performance of a particular attack scenario. Ideally,
one would exhibit an explicit functional relationship of the SR with the number
of measurements, signal-to-noise ratio (SNR), and other important quantities
determining the relationship between correct and false key hypotheses such as
confusion coe" cients [10]. The resulting closed-form expression would allow one
to better understand how e! ective the attack can be under speciÞc conditions
and how one can mitigate it with appropriate countermeasures.

So far, however, it can be theoretically computed only for a very narrow
range of distinguishers (DoM [10], CPA [18,29,31], Bayesian attacks [29]) and
only under restrictive ÒidealÓ scenarios (e.g., perfectly known leakage model in
Gaussian noise). Moreover, the resulting exact expressions involve high dimen-
sional functions whose dependency on the relevant parameters (such as confusion
coe" cients) can be very complex. ForDoM and CPA under ideal scenarios, the
resulting formulas involve a multivariate normal c.d.f. [28] for which no closed-
form expression exists, while as was found in the case ofCPA [29] the correspond-
ing matrices are not of full rank and require heavy Monte-Carlo computation.

In this paper, we carry out a theoretical derivation of the SR for quite
arbitrary distinguishers, at the Þrst order of the exponent. More precisely, our
computation yields closed-form expressions of the success exponent (SE) associ-
ated to the failure rate (1ÐSR) at Þrst order as the number of measurementsm
increases:

1 ! SR " e" m áSE. (1)

(The precise mathematical meaning of the equivalence" will be given in
DeÞnition 7.) Even though we obtain the derived expression for the SE under
the asymptotic condition that m tends to inÞnity, simulations show that Eq. (1)
is still accurate even for fairly small values ofm.

Such an evaluation of the success rate, suitable even for a small number of
traces, allows one to compare all possible distinguishers in any scenario (noise dis-
tribution, unprotected or protected implementation, etc.). A recent paper by Duc
et al. [9, Theorem 2] tackles this problem and achieves a unilateral bound. Here
we give both a lower and an upper bound, and as an illustration derive the exact
expression of the SE forDoM, CPA, MIA and the optimal distinguisher when model
is known (template attack) in terms of the appropriate relevant parameters.

The rest of this paper is organized as follows. Section2 gives the necessary
deÞnitions about distinguishers, success and soundness. In Sect.3, we examine
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the convergence of success rate and apply a central limit theorem to derive the
SE (Theorem 1). Section4 validates the SE even for relatively small number
of traces, and Sect.5 provides closed-form expressions of SE for some popular
distinguishers. The conclusions and promising perspectives are in Sect.6.

2 Preliminaries

In the sequel, we consider a standard univariate side-channel scenario as deÞned
in [21]. Let k# denote the secret cryptographic key,k any possible key hypothesis.
Also let X be a random variable1 representing the measured leakage andT be
the (random) input or cipher text used for a given encryption request. The
attacker knows some mappingf corresponding to an the internally processed
variable f (k, T ). A common consideration is f (T, k) = Sbox[T # k] where Sbox
is a substitution box. The measured leakageX can then be written as

X = ! (f (T, k#)) + N, (2)

where! is a deterministic leakage function and whereN is an independentÑnot
necessarily GaussianÑadditive noise with zero mean (E{ N } = 0). The device-
speciÞc deterministic function ! is normally unknown to the attacker but she
may estimate it as ö! and compute the sensitive variableY (k) = ö! (f (T, k)) for
each key hypothesisk. For later ease of notation we may drop the letter k and
write Y = Y(k) and Y # = Y(k#). We do not make any particular assumption
on ! or f so that our framework can be applied to any arbitrary scenario.

2.1 Distinguisher

In practice, the distinguisher is a function of m i.i.d. leakage measurements
X 1, X 2, . . . , X m and sensitive variablesY1(k), Y2(k), . . . , Ym (k) whose maximiza-
tion over the key hypothesis yieldsök = arg maxk !D(k), where

!D(k) = !D(X 1, X 2, . . . , X m ; Y1(k), Y2(k), . . . , Ym (k)) . (3)

DeÞnition 1 (Theoretical Distinguisher). We assume that there is a
ÒtheoreticalÓ value of the distinguisher

D(k) = D(X, Y (k)) (4)

for each k such that !D(k) converges toD(k) as m $ + % in the mean-squared
sense, i.e., the mean-squared error

MSEm = E
" #!D(k) ! D(k)

$2
%

$ 0 as m $ + %. (5)

1 Capitals such as X denote random variables. The corresponding lowercasex denotes
realizations of these random variables. We write P{ A} for the probability of an event
A and E{ X } for the expectation of a random variable X .
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This implies that !D(k) $ D(k) in probability. Thus we may consider the practi-
cal distinguisher !D(k) as anestimator of the theoretical D(k). The corresponding
bias and variance of !D(k) are

Bm (k) = E{ !D(k)} ! D(k) (6)

Vm (k) = Var( !D(k)) . (7)

Example 1 (CPA [4]). For correlation analysis we have

!D(k) = m
! m

i =1 X i Yi "
! m

i =1 X i
! m

i =1 Yi&
m

! m
i =1 X 2

i " (
! m

i =1 X i ) 2
&

m
! m

i =1 Y 2
i " (

! m
i =1 Yi ) 2

(8)

D(k) = " (X, Y ) =
Cov(X, Y )

#X #Y
=

E{ (X ! µX )(Y ! µY )}
#X #Y

. (9)

Example 2 (MIA [12]). For mutual information

D(k) = I (X, Y ) = H (X ) ! H (X |Y ) (10)

can be estimated e.g. with histograms as

!D(k) =
&

x

&

y

öP(x, y) log2

öP(x, y)
öP(x)öP(y)

. (11)

Lemma 1. Bias Bm (k) and variance Vm (k) tend to zero asm increases.

Proof. One has the well-known bias-variance compromise: MSEm = E{
#!D(k) !

E{ !D(k)} + Bm (k)
$2

} = Vm (k)+ Bm (k)2 +0 where the cross-term vanishes. Since
MSEm $ 0 it follows that Vm (k) $ 0 and Bm (k) $ 0. '(

2.2 Success Rate

The success rate (SR) is the classical evaluation metric when comparing empirical
side-channel distinguishers!D(k). It is generally calculated empirically [8,19,21].
The exact (theoretical) value of SR [10,18,29,31] is as follows.

DeÞnition 2 (Success Rate and Failure Rate). The average success prob-
ability is deÞned by

SR( !D) = P{ ) k *= k#, !D(k#) > !D(k)} . (12)

where k# is the actual value of the secret key. It is sometimes convenient to
consider the average failure rateas the complementary probability

FR( !D) = 1 ! SR( !D) = P{ +k *= k#, !D(k) , !D(k#)} . (13)

Evaluating probabilities of events like { +k *= k#, !D(k) , !D(k#)} may be
cumbersome. In order to pass from those to individual events{ !D(k) , !D(k#)}
for each k, the following lemma is convenient.
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Lemma 2 (Squeezing the Failure Rate). One can lower and upper bound
the failure rate as follows:

max
k$= k !

P{ !D(k) , !D(k#)} - FR( !D) -
&

k$= k !

P{ !D(k) , !D(k#)} . (14)

Proof. We can write FR( !D) = P
' (

k$= k !

' !D(k) , !D(k#)
))

. The upper bound
follows from the union bound P{

(
k Ak } -

*
k P{ Ak } . Now the probability of

the union is not less that of any individual event { !D(k) , !D(k#)} . Choosing the
one with maximal probability gives the lower bound. '(

Remark 1. The lower bound approximation in Eq. (14) is reminiscent of ideas
developed by Whitnall and Oswald in [33] where they deÞne a framework for the
theoretical evaluation of side-channel distinguishers. Their outcome is captured
by the relative behavior of the distinguisher for the correct key and its nearest
rival. We leverage on this idea to prove our Theorem1 in Sect. 3.

Lemma 2 leads us to deÞne pairwise quantities (see e.g., [29, Eq. (13)]).

DeÞnition 3 (Pairwise Deltas). For any function f (k) deÞne

$ f (k#, k) = f (k#) ! f (k). (15)

Thus $ !D(k#, k) = !D(k#) ! !D(k) and $ D(k#, k) = D(k#) ! D(k). The pairwise
error probability for the transition k# $ k is

P{ !D(k) , !D(k#)} = P{ $ !D(k#, k) - 0} . (16)

Lemma 3. The di! erence $ !D(k#, k) estimates $ D(k#, k) with bias and
variance

Bm (k#, k) = Bm (k#) ! Bm (k) (17)

Vm (k#, k) = Var( $ !D(k#, k)) (18)

tending to zero asm $ + %.

Proof. Since !D(k) $ D(k) and !D(k#) $ D(k#) in the mean-square sense
(DeÞnition 1) we can deduce that !D(k#) ! !D(k) $ D(k#) ! D(k) also in the
mean-square sense. This follows from MinkowskiÕs inequality

+
E{ (X ± Y)2} -+

E{ X 2} +
+

E{ Y 2} . The proof of Lemma 1 now applies verbatim to show that
Bm (k#, k) $ 0 and Vm (k#, k) $ 0. '(

2.3 Soundness

DeÞnition 4 (Soundness Condition). The attack using distinguisher !D(k)
is soundif the corresponding theoretical distinguisherÕs values satisfy the inequal-
ities

D(k#) > D(k) for all k *= k#. (19)

In other words $ D(k#, k) > 0 for all bad key hypothesesk.
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In [13] the authors give a proof of soundness forCPA. Note that, DoM can
be seen as a special case ofCPA (when m $ % ) where Y . {± 1} and thus is all
the more sound.MIA was proven sound for Gaussian noise in [23,26].

Proposition 1 (Soundness). When the attack is sound, the success eventu-
ally tends to 100 % asm increases:

SR( !D) $ 1 as m $ + %. (20)

This has been taken as a deÞnition of soundness in [30, Sect. 5.1]. We provide
an elegant proof.

Proof. By Lemma 2, 1 ! SR( !D) -
*

k$= k ! P{ $ !D(k#, k) - 0} . It su" ces to show

that for each k *= k#, P{ $ !D(k#, k) - 0} = P{ $ D(k#, k)! $ !D(k#, k) , $ D(k#, k)}
tends to zero. Now by the soundness assumption,$ D = $ D(k#, k) > 0.
Dropping the dependency on (k#, k) for notational convenience, one obtains

P{ $ D ! $ !D , $ D} -
E

" #
$ D ! $ !D

$2
%

$ D2 $ 0 (21)

where we have used ChebyshevÕs inequalityP{ X , %} - E{ X 2 }
! 2 and the fact that

$ !D(k#, k) $ $ D(k#, k) in the mean-square sense (Lemma3). '(

Since SR(!D) $ 1 asm increases we are led to investigate the rate of conver-
gence of FR(!D) = 1 ! SR( !D) toward zero. This is done next.

3 Derivation of Success Exponent

3.1 Normal Approximation and Assumption

We Þrst prove some normal (Gaussian) behavior in the case of additive distin-
guishers and then generalize.

DeÞnition 5 (Additive Distinguisher [18]). An additive distinguisher can
be written in the form of a sum of i.i.d. terms:

!D(X 1, X 2, . . . , X m ; Y1(k), Y2(k), . . . , Ym (k)) =
1
m

m&

i =1

!D(X i ; Yi (k)) . (22)

Remark 2. DoM is additive (see e.g., [10]). Attacks maximizing scalar products* m
i =1 X i Yi are clearly additive; they constitute a good approximation to CPA,

and are even equivalent toCPA if one assumes that the Þrst and second moments
of Y (k) are constant independent ofk (see [14,27,29] for similar assumptions).
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Lemma 4. When the distinguisher is additive, the corresponding theoretical
distinguisher is

D(X, Y (k)) = E{ !D(X ; Y (k)) } . (23)

Thus $ !D(k#, k) is an unbiased estimator of$ D(k#, k), whose variance is

Vm (k#, k) =
Var

#!D(X ; Y (k#)) ! !D(X ; Y (k))
$

m
(24)

Proof. Letting E{ !D(X ; Y (k)) } = D(k), since the terms !D(X i ; Yi (k)) are inde-
pendent and identically distributed, one has

E
" #!D(k) ! D(k)

$2
%

= 1
m 2 E

" & m

i =1

#!D(X i ; Yi (k)) ! D(k)
$2

%
(25)

= 1
m E

" #!D(X ; Y (k)) ! D(k)
$2

%
$ 0. (26)

Therefore, 1
m

* m
i =1

!D(X i ; Yi (k)) $ E{ !D(X ; Y (k)) } in the mean-square sense.
(This is actually an instance of the weak law of large numbers). The correspond-
ing bias is zero:E{ !D(k)} ! D(k) = 0.

Taking di ! erences, it follows from Lemma3 that $ !D(k#, k) $ $ D(k#, k) in
the mean-square sense with zero bias. The corresponding variance is computed as
above asE

'#
$ !D(k#, k) ! $ D(k#, k)

$2)
= 1

m E
'## !D(X ; Y (k#)) ! !D(X ; Y (k))

$
!

#
D(X ; Y (k#)) ! D(X ; Y (k))

$$2)
= 1

m Var
#!D(X ; Y (k#)) ! !D(X ; Y (k))

$
. '(

Proposition 2 (Normal Approximation). When the distinguisher is addi-
tive, $ !D(k#, k) follows the normal approximation

$ !D(k#, k) / N
#
$ D(k#, k), Vm (k#, k)

$
(27)

as m increases. This means that

$ !D(k#, k) ! $ D(k#, k)
+

Vm (k#, k)
(28)

converges to the standard normalN (0, 1) in distribution.

Proof. Apply the central limit theorem to the sum of i.i.d. variables
m$ !D(k#, k) =

* m
i =1

!D(X i ; Yi (k#)) ! !D(X i ; Yi (k)). It follows that

m$ !D(k#, k) ! m$ D(k#, k)
,

m áVar
-

$ !D(k#, k)
. =

$ !D(k#, k) ! $ D(k#, k)
+

Vm (k#, k)
(29)

tends in distribution to N (0, 1). '(

Remark 3. Notice that the normal approximation is not a consequence of a
Gaussian noise assumption or anything actually related to the leakage model
but is simply a genuine consequence of the central limit theorem.
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The above result for additive distinguishers leads us to the following.

DeÞnition 6 (Normal Assumption). We say that a sound distinguisher fol-
lows the normal assumption if

$ !D(k#, k) / N
#
E{ $ !D(k#, k)} , Vm (k#, k)

$
(30)

as m increases.

Remark 4. We note that in general

E{ $ !D(k#, k)} = $ D(k#, k) + $ Bm (k#, k) (31)

has a bias term (Lemma 3). By Proposition 2 any additive distinguisher fol-
lows the above normal assumption (with zero bias). We shall adopt the normal
assumption even in situations where the distinguisher is not additive (as is the
case of MIA) with possibly nonzero bias. The corresponding outcomes will be
justiÞed by simulations in Sect.4.

3.2 The Main Result: Success Exponent

Recall a well-known mathematical deÞnition that two functions are equivalent:
f (x) / g(x) if f (x)/g (x) $ 1 asx $ + %. The following deÞnes a weaker type
of equivalencef (x) " g(x) at Þrst order of exponent, which is required to derive
the success exponent SE.

DeÞnition 7 (First-Order Exponent [7, Chap. 11]). We say that a function
f (x) has Þrst order exponent &(x) if

#
ln f (x)

$
/ &(x) as x $ + %, in which

case we write

f (x) " exp&(x). (32)

Lemma 5. Let Q(x) = 1%
2"

/ + &
x e" t 2 / 2 dt be the tail probability of the standard

normal (a.k.a. Marcum function). Then as x $ + %,

Q(x) " e" x 2 / 2. (33)

Proof. For t > x , we can write
0 + &

x

1 + 1/t 2

1 + 1/x 2

e" t 2 / 2
&

2'
dt - Q(x) -

0 + &

x

t
x

e" t 2 / 2
&

2'
dt. (34)

Taking antiderivative yields

1
1 + 1/x 2

1
&

2'

e" x 2 / 2

x
- Q(x) -

1

x
&

2'
e" x 2 / 2. (35)

Taking the logarithm gives

! x2/ 2 ! ln(x + 1 /x ) ! ln(2' )/ 2 - ln Q(x) - ! x2/ 2 ! ln x ! ln(2' )/ 2 (36)

which shows that lnQ(x) / ! x2/ 2. '(
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Lemma 6. Under the normal assumption,

P{ $ !D(k#, k) - 0} " exp
1

!

#
$ D(k#, k) + $ Bm (k#, k)

$2

2 Vm (k#, k)

2
. (37)

Proof. Noting that

P{ $ !D(k#, k) - 0} = P
"

# "D (k ! ,k ) " E{ # "D (k ! ,k ) }&
Vm (k ! ,k )

- " E{ # "D (k ! ,k ) }&
Vm (k ! ,k )

%
(38)

and using the normal approximation it follows that

P{ $ !D(k#, k) - 0} " Q
- E{ $ !D(k#, k)}

+
Vm (k#, k)

.
(39)

whereE{ $ !D(k#, k)} = $ D(k#, k)+ $ Bm (k#, k). The assertion now follows from
Lemma 5. '(

Theorem 1. Under the normal assumption,

FR( !D) = 1 ! SR( !D) " exp
-

! min
k$= k !

#
$ D(k#, k) + $ Bm (k#, k)

$2

2 Vm (k#, k)

.
. (40)

Proof. We combine Lemmas2 and 6. The lower bound of FR( !D) is

" max
k$= k !

exp
-

!

#
$ D(k#, k) + $ Bm (k#, k)

$2

2 Vm (k#, k)

.
(41)

= exp
-

! min
k$= k !

#
$ D(k#, k) + $ Bm (k#, k)

$2

2 Vm (k#, k)

.
. (42)

The upper bound is the sum of vanishing exponentials (fork *= k#) which is
equivalent to the maximum of the vanishing exponentials, which yields the same
expression. The result follows since the lower and upper bounds from Lemma2
are equivalent asm increases. '(

Corollary 1. For any additive distinguisher,

FR( !D) = 1 ! SR( !D) " e" m áSE( "D ) (43)

where

SE( !D) = min
k$= k !

$ D(k#, k)2

2 Var
#!D(X ; Y (k#)) ! !D(X ; Y (k))

$. (44)

Proof. Apply the above theorem using Lemma4 and Proposition 2. '(

Remark 5. We show in Sect.5 that for non-additive distinguisher such as MIA
the closed-form expression for the Þrst-order exponent is linear in the number
of measurementsm so that the expression 1! SR " e" m áSE may be considered
as fairly general for large m. Moreover, we experimentally show in the next
section that this approximation already holds with excellent approximation for
a relatively small number of measurementsm.
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4 Success Exponent for Few Measurements

Some devices such as unprotected 8-bit microprocessors require only a small
number of measurements to reveal the secret key. As the SNR is relatively high,
the targeted variable has the length of the full size, and on such processors,
the pipeline is short or even completely absent. On such worst-case platforms,
such as the AVR ATMega, the SNR can be has high as 7, for those instructions
consisting in memory look-ups. ACPA requiresm = 12 measurements (cf. DPA
contest v4, for attacks reported in [2]).

In order to investigate the relation SR " 1! e" m SE for such small values ofm,
we target PRESENT [3], which is an SPN (Substitution Permutation Network)
block cipher, with leakage model given byY(k) = HW (Sbox(T # k)), where
Sbox : F4

2 $ F4
2 is the PRESENT substitution box and k . F4

2. We considered
N / N (0, 1) in our simulations applied to the following distinguishers:

Ð optimal distinguisher (a.k.a. template attack [6], whose formal expression is
given in [15] for Gaussian noise);

Ð DoM [17]2 on bit #2;
Ð CPA (Example 1),
Ð MIA (Example 2), with three distinct bin widths of length $ x . { 1, 2, 4} , and

two kinds of binning:
¥ B1, which partitions R as

(
i ' N[i$ x, (i + 1) $ x[, and

¥ B2, which partitions R as
(

i ' N[(i ! 1
2 )$ x, (i + 1

2 )$ x[.

Fig. 1. Failure rate for few measurements. (a) Optimal distinguisher, CPA, DoM, and
MIA. (b) Zoom out for less e " cient attacks DoM and MIA.

Figure 1 shows the failure rate in a logarithmic scale for 10, 000 simulations
with additional error bars as described in [19]. To assess the linear dependence

2 It is known that for bit #1, the DoM is not sound: the same distinguisher value can
be obtained for the correct key k = k! and for at least one incorrect key k = k! ! 0x9.
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log(1! SR) = ! mSE between the logarithm of the error rate and the number of
traces, we have superimposed the linear slope! SE in black. We Þnd that CPA
and the optimal distinguishers behave according to the law form as small as 2!
The error rate of MIA and DoM becomes linear for m , 40. Interestingly, for
MIA, the binning size has an impact (see also [12,23]). The best parameterization
of the MIA corresponds to $ x = 2, for both B1 and B2.

5 Closed-Form Expressions of SE

5.1 Success Exponents for DoM and CPA

We precise our side-channel model from Eq. (2) in case of additive distinguishers.
As these distinguishers are most usually used when the leakageX is linearly
depend onY #, we assume similar to previous works [10,31] X = ( Y # + N . To
simplify the derivation, we assume that the distribution of Y (k) is identical for
all k. In other words, knowing the distribution of Y (k) does not give any evidence
about the secret (see [14,27] for similar assumptions). In particular Var { Y (k)}
is constant for all k. Without loss of generality we may normalize the sensitive
variable Y such that E{ Y (k)} = 0 and Var { Y (k)} = E{ Y (k)2} = 1. The SNR
is thus equal to ( 2/ #2.

We Þrst extend the idea of confusion similar to [31], which we call general
2-way confusion coe" cients.

DeÞnition 8 (General 2-way Confusion Coe ! cients). For k *= k# we
deÞne

) (k#, k) = E
"- Y (k#) ! Y (k)

2

. 2%
, (45)

) ((k#, k) = E
"

Y (k#)2
- Y (k#) ! Y (k)

2

. 2%
. (46)

Remark 6. The authors of [10] deÞned the confusion coe" cient as ) (k#, k) =
P{ Y (k#) *= Y(k)} . A straightforward computation gives

P{ Y (k#) *= Y(k)} = P{ Y (k#) = ! 1, Y (k) = 1) } + P{ Y (k#) = ! 1, Y (k) = 1 }

= E{
#Y(k#) ! Y (k)

2

$2
} . (47)

Thus our deÞnition is consistent and a natural extension of the work in [10].
The alternative confusion coe" cient introduced in [31] is deÞned as

) ) (k#, k) = E{ Y (k#)Y (k)} . The following relationship is easily obtained:

) ) (k#, k) = 1 ! 2) (k#, k). (48)

Proposition 3 (SE for CPA). The success exponent forCPA takes the closed-
form expression

SE = min
k$= k !

( 2) 2(k#, k)
2(( 2() ((k#, k) ! ) 2(k#, k)) + #2) (k#, k))

. (49)
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Proof. Proposition 3 is an immediate consequence of the formula in Eq. (44) and
the following lemma. '(

Lemma 7. The Þrst two moments of !$ D(k#, k) are given by

E{ !$ D(k#, k)} = 2 () (k#, k), (50)

Var( !$ D(k#, k)) = 4[ ( 2() ((k#, k) ! ) 2(k#, k)) + #2) (k#, k)]. (51)

Proof. Recall from Remark 2 that !$ D(k#, k) = XY # ! XY = ( ( Y # + N )(Y # !
Y ). On one hand, since we assumed thatE{ (Y #)2} = 1, we obtain

E{ Y #(Y # ! Y )} = 1 ! E{ Y #Y} = 2E
' - Y # ! Y

2

. 2)
= 2 ) (k#, k). (52)

On the other hand, sinceN is independent ofY ,

E{ N (Y # ! Y )} = E{ N } áE{ Y # ! Y } = 0 . (53)

Combining we obtain E{ !$ D(k#, k)} = 2 () (k#, k). For the variance we have

E{ !$ D(k#, k)2} = E{ (XY # ! XY )2} (54)

= E{ N 2(Y # ! Y )2} + ( 2E{ Y #2(Y # ! Y )2} (55)

= 4#2) (k#, k) + ( 24) ((k#, k), (56)

since all cross terms withN vanish. It follows that

Var( !$ D(k#, k)) = E{ !$ D(k#, k)2} ! E{ !$ D(k#, k)} 2 (57)

= 4[ ( 2() ((k#, k) ! ) 2(k#, k)) + #2) (k#, k)]. (58)

as announced. '(

For DoM with one-bit variables Y(k) . {± 1} we can further simplify the
success exponent such that it can be expressed directly through the SNR =
( 2/ #2, number of measurements and 2-way confusion coe" cient ) (k#, k):

Proposition 4 (SE for 1-bit DoM ). The success exponent forDoM takes the
closed-form expression

SE =
1

max
k$= k !

- 2 ! 2) (k#, k)
) (k#, k)

+
2

) (k#, k) SNR

. (59)

Proof. When Y(k) . {± 1} on has the additional simpliÞcation:

) (k#, k) = E
' - Y (k#) ! Y (k)

2

. 2)
= E

'
Y (k#)2

- Y (k#) ! Y (k)
2

. 2)
= ) ((k#, k).

(60)

Now Proposition 4 follows directly from Proposition 3. '(
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Remark 7. Estimating the success rate directly from confusion coe" cients
includes a computation of a multivariate normal cumulative distribution func-
tion [28] for which we have found that no closed-form expression exists. Moreover,
the corresponding covariance matrices [) (k#, i, j )]i,j and [) (k#, i ) 0 ) (k#, j )]i,j
that depend on the confusion coe" cients are not of full rank. This e! ect was
similarly discovered for CPA by Rivain in [ 29], where the author propose to use
Monte-Carlo simulation to overcome this problem.

Therefore, it is di" cult to rederive the expressions above for the success expo-
nent from the exact expressions of SR in [10,29]. However, one clearly obtains
the same exponential convergence behavior of SR toward 100 %.

As a result, we stress that the closed-form expressions of SE above are more
convenient than the exact expressions for the SR forDoM and CPA, since in the
SE, only 2-way confusion coe" cients ) (k#, k), ) ((k#, k) are involved without the
need to compute multivariate distributions.

5.2 Success Exponent for the Optimal Distinguisher

DeÞnition 9 (Optimal Distinguisher [15]). In case( is known and the noise
is Gaussian theoptimal distinguisher is additive and given by

D(k) = ! (X ! ( Y )2 (61)

!D(X, Y (k)) = ! (X ! ( Y (k))2. (62)

Interestingly, as we show in the following proposition the optimal distinguisher
involves the following confusion coe" cient.

DeÞnition 10 (Confusion Coe ! cient for the Optimal Distinguisher).
For k *= k# we deÞne

) (((k#, k) = E
"- Y (k#) ! Y (k)

2

. 4%
. (63)

Proposition 5 (SE for the Optimal Distinguisher). The success exponent
for the optimal distinguisher takes the closed-form expression

SE = min
k$= k !

( 2) 2(k#, k)
2(#2) (k#, k) + ( 2() (((k#, k) ! ) (k#, k))

. (64)

Proof. Proposition 5 is an immediate consequence of the formula in Eq. (44) and
the following lemma. '(

Lemma 8. The Þrst two moments of !$ D(k#, k) are given by

E{ !$ D(k#, k)} = 4 ( 2) (k#, k), (65)

Var( !$ D(k#, k)) = 16 ( 2(#2) (k#, k) + ( 2() (k#, k)(( ! ) (k#, k))) . (66)



A Key to Success 283

Proof. Recall that E{ N } =0. Straightforward calculation yields

E{ !$ D(k#, k)} = E{ ! (X ! ( Y #)2 + ( X ! ( Y )2} (67)

= E{ 2N ( (Y # ! Y )} + E{ ( 2(Y # ! Y )2} (68)

= 4 ( 2) (k#, k). (69)

Next we have

E{ !$ D(k#, k)2} = E{ (2N ( (Y # ! Y ) + ( 2(Y # ! Y )2)2} (70)

= E{ 4N 2( 2(Y # ! 2)2} + E{ (Y # ! Y )4( 4} (71)

= 16( 2#2) (k#, k) + 16 ( 4) (((k#, k) (72)

which yields the announced formula for the variance. '(

Corollary 2. The closed-form expressions forDoM, CPA and for the optimal
distinguisher simplify for high noise # 1 ( in a single equation:

SE " min
k$= k !

( 2) 2(k#, k)
2#2) (k#, k)

=
1
2

áSNR ámin
k$= k !

) (k#, k). (73)

Proof. Trivial and left to the reader. '(

Remark 8. Corollary 2 is inline with the Þndings in [15], that CPA and the
optimal distinguisher become closer the lower the SNR. However, note that,
in [15] CPA is the correlation of the absolute value.

Remark 9. From Corollary 2 and the relationship 1 ! SR " e" m áSE one can
directly determine that if, e.g., the SNR is decreased by a factor of 2 the num-
ber of measurementsm have to multiplied by 2 in order to achieve the same
success. This veriÞes a well-known Òrule of thumbÓ for side-channel attacks (see
e.g., [20]).

5.3 Success Exponent for MIA

Unlike CPA or DoM, the estimation of the mutual information in MIA:

D(k) = I (X, Y ) = H (X ) ! H (X |Y ) (74)

= !
0

p(x) log p(x) dx +
&

y

p(y)
0

p(x|y) log p(x|y) dx (75)

is a nontrivial problem. While Y is discrete, the computation of mutual infor-
mation requires the estimation of the conditional pdfs p(x|y). For a detailed
evaluation of estimation methods for MIA we refer to [32].

In the following, we consider the estimation with histograms (H-MIA) in order
to simplify the derivation of a closed-form expression for SE. One partitions the
leakageX into h distinct bins bi of width $ x with i = 1 , . . . , h.
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DeÞnition 11. Let öp(x) = # bi
m where# bi is the number of leakage values falling

into bin bi and let öp(x|y) be the estimated probability knowingY = y. Then

!D(k) = !
&

x

öp(x) log öp(x) +
&

y

öp(y)
&

x

öp(x|y) log öp(x|y). (76)

To simplify the presentation that follows, we consider only the conditional
negentropy ! öH (X |Y ) as a distinguisher, since öH (X ) does not depend on the
key hypothesisk. Additionally, we assume that the distribution of Y is known
to the attacker so that she can usep(y) instead of öp(y). Now H-MIA simpliÞes
to

H-MIA(X, Y ) =
&

y

p(y)
&

x

öp(x|y) log öp(x|y) + log $ x. (77)

The additional term log $ x arises due to the fact that we have estimated the
di! erential entropy H (X ). For more information on di ! erential entropy and
mutual information we refer to [7].

Proposition 6 (SE for H- MIA).

SE " min
k ! $= k

1
2

#
$ D(k#, k) + # x 2

24

#
$ J (k#, k)

$$2

&

y

p(y)Var { ! logp(X |Y = y)} +
&

y!

p(y#)Var { ! logp(X |Y = y#)}
,

(78)

where $ D(k#, k) = H (X |Y ) ! H (X |Y #), $ J (k#, k) = J (X |Y ) ! J (X |Y #),
J (X |Y ) =

*
y p(y)J (X |Y = y) and J (X |Y ) is the Fisher information [11]:

J (X |Y = y) =
0 &

"&

[ d
dx p(x|y)]2

p(x|y)
dx. (79)

Proof. SinceY is discrete the bias only arise due to the discretization ofX and
the limited number of measurementsm. Therefore, we use the approximations
given for the bias of öH (X ) in [22] (3.14) to calculate E{ !D(k)} and E{ !$ D(k#, k)}
for H-MIA. To be speciÞc, leth deÞne the number of bins and$ x their width.
Then

E{ !D(k)} = ! E{ öH (X |Y )} = !
&

y

p(y)E{ öH (X |Y = y)} , (80)

" !
&

y

p(y)
3
H (X |Y = y) +

$ x2

24
J (X |Y = y)

4
!

h ! 1
2m

, (81)

E{ !$ D(k#, k)} "
&

y

p(y)
3
H (X |Y = y) +

$ x2

24
J (X |Y = y)

4

!
- &

y!

p(y#)
3
H (X |Y # = y#) +

$ x2

24
J (X |Y # = y#)

4.
, (82)
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with J (X |Y ) =
*

y p(y)J (X |Y = y) and J (X |Y = y) being the Fisher informa-

tion
/ &

"&
[ d

dx p(x |y )] 2

p(x |y ) dx [11].

To calculate Var{ !D(k)} we use the law of total variance [16] and the approx-
imations for the variance given in [22] (4.9):

Var{ !D(k)} = Var { öH (X |Y )}} = Var { E{ öH (X |Y = y)}} (83)

" Var{ H (X )} !
1
m

&

y

p(y)Var { ! logp(x|y)} (84)

Var{ !$ D(k#, k)} = Var { E{ öH (X |Y = y}} ! Var{ E{ öH (X |Y # = y#}} (85)

! 2Cov(E{ öH (X |Y = y}} , E{ öH (X |Y # = y#}} )

"
1
m

- &

y

p(y)Var { ! logp(x|y)} +
&

y

p(y#)Var { ! logp(x|y#)}
.

(86)

From Eqs. (82) and (86) Proposition 6 follows directly. '(

Remark 10. Interestingly, even if MIA is not additive the SE is linear in the
number of measurementsm just like for DoM and CPA. This is also conÞrmed
experimentally in the next subsection.

Remark 11. If N is normal distributed with variance #2 we can further simplify
H (X |Y # = y#) = 1

2 log(2' e#2) since p(x|y#) = pN (x ! y#). Moreover, one has
J (X |Y # = y) = 1

$ 2 and Var{ ! logp(x|y#)} = 1
2m .

Remark 12. Remarkably, the variance term does not depend on the size of$ x
except in extreme cases like$ x = 1 and $ x $ % Ð see [22] for more information.

5.4 Validation of the SE

To illustrate the validity of the success exponent and the derived closed-form
expressions, we choose the same scenario as in Sect.4 (targeting the Sbox of
PRESENT) with a higher variance of the noise. We increased the bin width$ x
to 4 for MIA, which lead to the best success when comparing with other widths.
To be reliable we conducted 500 independent experiments in each setting.

With the appropriate parameters (confusion coe" cients, SNR, etc.), we have
computed the exact values for the closed-form expressions in Eqs. (49), (59), (64),
and (78) for CPA, DoM, the optimal distinguisher, and MIA which are listed in
Table 1 with SE for several #Õs. Additionally, we computed forCPA, DoM, and
the optimal distinguisher the SE in case of low noise from Eq. (73). To show
that these values are valid and reasonable, we estimated the success exponent
5SE from the general theoretical formula in Eq. (44) using simulations. One can
observe that Corollary 2 is valid.

Moreover, we estimated the success exponent directly from the obtained suc-
cess rate as! log(1 ! SR( !D)) /m ; this was done for limited values ofm to avoid
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Table 1. Experimental validation of SE for several ! (values " 10" 3)

! 10" 3 ! = 5 ! = 7 ! = 10

DPA CPA OPT MIA DPA CPA OPT MIA DPA CPA OPT MIA

SE 0.2 4.5 4.8 1.4 0.1 2.3 2.4 0.8 0.01 1.2 1.2 0.4

SE (Eq. ( 73)) 0.2 4.7 4.7 Ñ 0.1 2.4 2.4 Ñ 0.01 1.2 1.2 Ñ
!SE 0.3 4.7 4.6 1.4 0.1 2.3 2.3 0.8 0.1 1.1 1.2 0.2

the saturation e! ect of the SR(!D) = 1. Figure 2b displays the theoretical value
of SE along with the estimations as a function of the number of measurements
for # = 5. For comparison we plot the success rate in Fig.2a.

Remarkably, one can see that for all distinguishers, the two estimated values
are getting closer to the theoretical SE asm increases. This conÞrms our the-
oretical study in Sect.3 and also demonstrates that the Þrst-order exponent of
MIA is indeed linear in the number of measurements as expected.

Fig. 2. Success rate [top graph] and success exponent (SE) [bottom graph]



A Key to Success 287

Fig. 3. Empirical results using real traces (Arduino board)

Furthermore, for practical measurements we used an Arduino pro mini board
with an AVR 328p micro-controller running at 16 MHz. We captured the oper-
ation of the AES Substitution box during the Þrst round at 2 GSa/s using an
EM probe. Figure 3a shows the success rate forDoM, CPA and MIA for 1600
independent retries. We plot ! log(1 ! SR( !D)) /m in Fig. 3b. One can observe
that DoM converges to a constant. ForCPA and MIA the saturation e! ect of
SR( !D) = 1 is disguising the convergence.

These results raise a lot of new perspectives which we discuss next.

6 Conclusion and Perspectives for Further Applications

In this work we investigated in the Þrst-order exponent (success exponent SE) of
the success rate for arbitrary sound distinguishers under a mild normal assump-
tion as m increases. The resulting expressions were derived under the asymptotic
condition that the number of measurementsm tends to inÞnity, but already hold
accurately for reasonable low values ofm. More precisely, in the investigated
scenarios the approximations forCPA hold for m , 2 whereas forMIA we have
m , 40. As an illustration we derived the closed-form expressions of the SE
for DoM, CPA, the optimal distinguisher, and MIA and showed that they agree
theoretically and empirically.

This novel Þrst-order exponent raises many new perspectives. In particular,
the resulting closed-form expressions for the SE allows one to answer questions
such as: ÒHow many more traces?Ó for achieving a given goal. For example, sup-
pose that one has obtained SE = 90 % afterm measurements. To obtain 99 %
success with the same distinguisher (hence the same SE), one should approxi-
mately square (1! SR)2 = (0 .1)2 = 0 .01 which amounts to doubling m. Thus as
a rule of thumb we may say that Òdoubling the number of traces allows one to
go from 90 % to 99 % chance of successÓ.

Finally, we underline that the success exponent would constitute another
approach to the question of comparing substitution boxes with respect to their
exploitability in side-channel analysis. It can nicely complement methods like
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transparency order [25] (and variants thereof [5,24]). It can also characterize, in
the same framework, various countermeasures such as no masking vs. masking.

The generality of the proposed approach to derive the success exponent allows
one to investigate attack performance in many di! erent scenarios, and we feel
that for this reason it is a promising tool.

Acknowledgements. The authors are grateful to Darshana Jayasinghe for the real-
world validation on traces taken from the Arduino board.
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