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Abstract—A novel “interclass information” side-channel distin-
guisher is compared to mutual information analysis. Interclass
information possesses properties similar to mutual information
but uses a different comparing strategy between the underlying
conditional distributions. It is shown that interclass information
can outperform mutual information in side-channel analysis, es-
pecially under low noise. The theoretical comparison is confirmed
by simulations.

I. INTRODUCTION

Side-channel analysis constitutes a serious threat against
modern cryptographic implementations. A side-channel attack
exploits unintentionally emitted physical leakage—such as
power consumption or electromagnetic emanation—from an
embedded device to retrieve secret information. The introduc-
tion of differential power analysis by Kocher et al. [1] gave rise
to many developments, attacks and models for the evaluation of
physical security. Prouff et al. [2], [3] made a careful theoretical
description of side-channel analysis for various scenarios and
attacks, including information-based attacks.

A typical side-channel scenario is as follows. A crypto-
graphic algorithm like AES or PRESENT is implemented on
a device using a secret sequence of key bytes. At a specific
step in the algorithm, some given (plain or cypher) text byte t

is combined with a specific secret key byte k
⇤ through e.g., a

XOR operation k
⇤ � t. From the attacker’s viewpoint, k⇤ is

fixed (deterministic) but unknown, while t is known but varies
for each encryption request; hence it is seen as a realization
of a uniformly distributed random variable T . The measured
leakage—the side channel output—takes the form

X = f(k⇤ � T ) + Z (1)

where Z is an additive noise independent of T , with density �,
and where f is a partially unknown, device-specific function.
The attacker computes a key estimate k̂ from an i.i.d. sequence
of such leakage measurements X , the attack being successful
if k̂ = k

⇤. The success rate gives a practical measure of the
attack performance.

In [4] the authors show that the side-channel problem is
equivalent to a communication problem in which the “message”
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is the secret key, T is a side information available at both emitter
and receiver, and the encoder or the deterministic part of the
memoryless channel is partially unknown. If f is completely
known (e.g., thanks to a preliminary profiling phase), the best
attack corresponds to a maximum likelihood decoder [4].

If, however, profiling is impossible as it would require an
exact copy of the device, the attacker is led to carry out some
statistical test in order to discriminate the correct key. The
attacker computes a leakage model class:

Y (k) = f̂(k � T ) (2)

for any key hypothesis k, where f̂ is a prediction function for
the deterministic part of the leakage. The test usually takes the
form of a maximization of a side-channel distinguisher [1]–[7]:

k̂ = argmax
k

bD(k) (3)

where bD(k) is computed as an estimation of some theoretical
distinguisher D(k). The estimation is obtained from the
available sequence of realizations of X and Y (k) for all k.

A large variety of distinguishers D(k) have been proposed
in the literature. Some classical choices include difference-
of-means [1], correlation [5], Kolmogorov-Smirnov [6], and
mutual information [7]:

DMIA(k) = I(X;Y (k)). (4)

Mutual information analysis (MIA) was proposed by Gierlichs
et al. [7] to overcome limitations such as the restriction to linear
dependency between the measured leakage and the assumed
leakage model. It turns out to be implemented similarly as
Goppa’s maximum mutual information decoder [8].

A fair comparison between different distinguishers is desir-
able as it helps to better understand how efficient a side-channel
attack can be and how to take appropriate countermeasures. Yet
in general it is a difficult task because many factors come into
play—in particular, intrinsic statistical properties and quality
of estimation.

In this paper, we consider a new information-theoretic
distinguisher:

DIIA(k) = II(X;Y (k)) (5)
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and the corresponding interclass information analysis (IIA).
Here interclass information, denoted by II(X;Y ), is defined
similarly as I(X;Y ) but compares the underlying conditional
distributions differently. We investigate a theoretical compara-
tive study of MIA and IIA which we validate by simulations.

The remainder of this paper is organized as follows. Sec-
tion II introduces a conditional-to-conditional comparison to
define interclass information. Section III derives some of its
properties in relation to mutual information. That both MIA and
IIA are sound as side-channel attacks is shown in Section IV.
Section V carries out the theoretical comparison between MIA
and IIA, with the help of numerical computation. The results are
confirmed by simulations in Section VI. Section VII concludes.

II. INTER-CLASS INFORMATION

It is well-known [9] that mutual information can be seen as
an expected Kullback-Leibler distance

I(X;Y ) = E{D
�
p(·|Y )kp(·)

�
} (6)

between the conditional distribution p(x|y) representative of
the “class” Y = y and the unconditional distribution p(x) =
E{p(x|Y )}, which is obtained as an expectation over all classes.
The comparison strategy is illustrated in Fig. 1a.

(a) conditional to unconditional

(b) conditional to conditional

Fig. 1. Two methods of comparison between probability distributions (the
“distance” being depicted as an arrow).

In [10], the authors suggested an alternative inter-class
comparison strategy in which the conditional distributions
are compared between themselves rather than with the global
distribution of the leakage, as illustrated in Fig. 1b. Simulations
have shown that a side-channel attack based on the more direct
conditional-to-conditional strategy can be more efficient in the
case of the Kolmogorov-Smirnov distance [10]. A detailed
theoretical comparison is also carried out in [11] for the

Kolmogorov-Smirnov test on one-bit leakages. In the case
of mutual information, we obtain the following definition.

Definition 1. The inter-class information between random
variables X and Y is defined as

II(X;Y ) =
1

2
E{D

�
p(·|Y )kp(·|Y 0)

�
} (7)

where Y
0 is an independent copy of Y and the expectation is

made over (Y, Y 0). The 1/2 factor makes up for double counts
(Y, Y 0) = (y, y0) and (y0, y).

From (1)–(2), p(x|y) is a conditional density and Y = Y (k)
assumes discrete values, and we can write

II(X;Y ) =
1

2

X

y

X

y0

p(y)p(y0)

Z
p(x|y) log p(x|y)

p(x|y0) dx. (8)

An alternative definition is that divergence in (6) is replaced
by a symmetric version:

Proposition 1.

II(X;Y ) = E{�
�
p(·|Y )kp(·)

�
} (9)

where �(pkq) = 1
2

�
D(pkq) + D(qkp)

�
is the symmetrized

Kullback-Leibler or Jeffreys divergence1.

Proof: Write
p(x|y)
p(x|y0) =

p(x|y)
p(x)

⇥ p(x)

p(x|y0) in (8) and expand.

Note. Since D(qkp) � 0, hence �(pkq) � 1
2D(pkq) one has2

II(X;Y ) � 1

2
I(X;Y ). (10)

III. INFORMATION-THEORETIC PROPERTIES

Just as mutual information can be written as a difference of
two entropies, we have the following3

Proposition 2.

II(X;Y ) =
1

2

�
H(XkY )�H(X|Y )

�
(11)

where H(XkY ) is a conditional “cross-entropy” defined as

H(XkY ) = �
Z X

y

p(x)p(y) log p(x|y) dx. (12)

Proof: Since �(pkq) = 1
2

R
(p � q) log p

q , from (9) we can
write

II(X;Y ) =
1

2

X

y

p(y)

Z �
p(x|y)� p(x)

�
log

p(x|y)
p(x)

(13)

=
1

2

X

y

p(y)

Z �
p(x|y)� p(x)

�
log p(x|y) (14)

where the simplification is due to the fact that E{p(x|Y )} =
p(x). The announced formula follows at once.

1Also known as the interclass divergence in cognitive and neural science [12].
2During the finalization of this paper we became aware that in fact

2II(X;Y )� I(X;Y ) is the lautum information [13].
3When X and Z follow densities, the entropies in question are differential

entropies. We keep the notation H (in place of h) to encompass the discrete
case for which the same formal relations hold.
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Interclass information has other properties similar to well-
known properties of mutual information.

Proposition 3.
(a) II(X;Y ) � 0 with equality II(X;Y ) = 0 if and only if

X,Y are independent;
(b) Symmetry: II(X;Y ) = II(Y ;X);
(c) Data processing inequality: if X�Y �Z is a Markov chain,

then II(X;Y ) � II(X;Z) and II(Y ;Z) � II(X;Z).

Proof: (a) is obvious from (10); (b) It is well-known that (6) is
symmetric in X,Y , and easily seen that the same holds for the
quantity E{D

�
p(x)kp(x|Y )

�
}. Hence (9) is also symmetric in

X,Y . (c) Suppose X � Y � Z is Markov. It is sufficient to
prove that II(X;Y ) � II(X;Z), the other inequality being
a consequence of the fact that Z � Y � X is also Markov.
We use Prop. 2. On one hand, by the (usual) data processing
inequality [9, Thm 2.8.1], one has I(X;Y ) � I(X;Z) or
H(X|Y )  H(X|Z). On the other hand, using the Markov
property p(x|y) = p(x|y, z),

H(XkY ) = �E
Z X

y

p(x)p(y|Z) log p(x|y, Z) dx (15)

� �E
Z

p(x) log
X

y

p(y|Z)p(x|y, Z) dx (16)

= �E
Z

p(x) log p(x|Z) dx = H(XkZ) (17)

where the inequality comes from the concavity of the logarithm.
Thus H(XkY ) � H(XkZ), which combined with H(X|Y ) 
H(X|Z) yields the announced inequality.

Although the above properties of interclass and mutual
informations are similar, it is important to note that their
behavior can be very different. This is best illustrated with an
example.

Example 1. Assume that X,Y are zero-mean (jointly) Gaus-
sian with variance �

2 and correlation coefficient ⇢(X,Y ) = ⇢.
It is easily seen that H(X|Y ) is the differential entropy of a
Gaussian of variance = �

2(1� ⇢
2). On one hand, this gives

the well-known formula for mutual information:

I(X;Y ) =
1

2
log

1

1� ⇢2
. (18)

On the other hand, cross-entropy H(XkY ) can be similarly
calculated:

H(XkY ) = �
Z

p(y)E{log p(X|y)} dy (19)

=
1

2
log

�
2⇡�2(1� ⇢

2)
�

(20)

+
log e

2�2(1� ⇢2)

Z
p(y)E{(X � ⇢y)2} dy

= H(X|Y ) + (log e)
⇣
�1

2
+

�
2 + ⇢

2 E(Y 2)

2�2(1� ⇢2)

⌘
(21)

= H(X|Y ) + (log e)
⇢
2

1� ⇢2
(22)

which from (11) gives the corresponding formula for interclass
information:

II(X;Y ) =
log e

2

⇢
2

1� ⇢2
. (23)

Both (18) and (23) vanish for ⇢ = 0 (independence) and are
infinite for |⇢| = 1 (linear dependence). However, as |⇢| ! 1
interclass information is increasing much faster than mutual
information. This shows, in particular, that no inequality of
the form

II(X;Y )  c · I(X;Y )

can hold generally for some constant c—although the opposite
type of inequality holds, see (10). In fact, as |⇢| ! 1, � =
1/(1 � ⇢

2) ! +1 and the fraction II(X;Y )/I(X;Y ) =
(log e)(�� 1)/ log � is unbounded.

This observation is similar to the well-known inequiva-
lence between independence I(X;Y ) = 0 and decorrelation
⇢(X,Y ) = 0, which means that no general inequality of
the form I(X;Y )  c · ⇢(X,Y ) can hold. This suggests
that interclass information can be somehow more sensitive
to dependence than mutual information.

IV. ATTACK SOUNDNESS

We now come back to the side-channel scenario (1)–(5).
Hereafter we use the convenient notations

Y = Y (k) and Y
⇤ = Y (k⇤). (24)

To simplify the theoretical study of distinguishers, it is
customary [14] to assume that f̂ = f in (2). As a consequence
we assume that X = Y

⇤ + Z. It is then easily seen that
for the correct key, the conditional distribution is simply
p(x|y⇤) = �(x � y

⇤), while for any key k 6= k
⇤, by the

law of total probability,

p(x|y) =
X

y⇤

p(y⇤|y)p(x|y, y⇤) =
X

y⇤

p(y⇤|y)�(x�y
⇤) (25)

is a nontrivial linear mixture of shifted noise densities [2],
where at least one coefficient p(y⇤|y) is < 1.

Definition 2 (see e.g., [2]). A side-channel attack is sound if
the corresponding (theoretical) distinguisher D(k) is maximum
when k is the correct key:

D(k) < D(k⇤) (8k 6= k
⇤). (26)

Soundness is a basic prerequisite for the success of an
attack (3). It implies that the success rate will eventually
converge to 100% as the number of measurements increases
indefinitely [2], [15]. MIA was proved sound in [16] under
Gaussian noise using the data processing inequality. As seen
below, the proof extends easily to any type of additive noise.
That IIA is also sound is proved similarly using the data
processing inequality for interclass information (Prop. 3).

Proposition 4. Under the above assumptions, MIA and IIA
are both sound.

Proof: Assume k 6= k
⇤. From (1)–(2) it is easily seen that

Y � Y
⇤ �X forms a Markov chain. By the data processing
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inequalities, I(X;Y ⇤) � I(X;Y ) and II(X;Y ⇤) � II(X;Y ).
It remains to prove that these inequalities are strict.

Since mixing increases entropy [9, Thm 2.7.3],

H(X|Y ) > E
X

y⇤

p(y⇤|Y )H(y⇤ + Z) = H(Z) = H(X|Y ⇤)

where the inequality is strict because the linear mixture (25)
is nontrivial. This shows that I(X;Y ⇤) > I(X;Y ), i.e.,
MIA is sound. Similarly, in the proof of Prop. 3 (c) above
(written for the Markov chain X � Y

⇤ � Y ), the fact that
the linear mixture (25) is nontrivial implies that (16) is a
strict inequality by the strict concavity of the logarithm. This
proves that H(XkY ⇤) > H(X|Y ), which combined with
H(X|Y ) > H(X|Y ⇤) shows that II(X;Y ⇤) > II(X;Y ), i.e.,
IIA is sound.

V. MIA VS. IIA UNDER GAUSSIAN NOISE

In this section, we compare the performances of MIA vs.
IIA under a Gaussian noise assumption Z ⇠ N (0,�2). We
first compare I(X;Y ⇤) and II(X;Y ⇤) .

Lemma 1.
II(X,Y

⇤) =
log e

2

�
2
Y ⇤

�2
(27)

where �
2
Y ⇤ denotes the variance of Y ⇤.

Proof: Expanding the relation p(x) =
P

y0 p(y0)p(x|y0) in (12)
and plugging (25) we have

H(XkY ⇤) = �E
X

y0

p(y0)

Z
p(x|y0) log p(x|Y ⇤) dx (28)

= �E
Z
�(x� Y

0⇤) log �(x� Y
⇤) dx (29)

where Y
0⇤ is an independent copy of Y ⇤, where (Y ⇤

, Y
0⇤) is

independent of Z. Making the change of variables z = x�y
0⇤,

the integral becomes

� E
Z

�(z) log �(z + Y
0⇤ � Y

⇤) dz

=
1

2
log(2⇡�2) +

log e

2�2
E{(Z + Y

⇤ � Y
0⇤)2}

= H(Z) +
log e

2�2
E{(Y ⇤ � Y

0⇤)2}. (30)

Since H(X|Y ⇤) = H(Z) in (11) we obtain

II(X;Y ⇤) =
log e

4�2
E{(Y ⇤ � Y

0⇤)2} =
log e

2�2
�
2
Y ⇤ . (31)

Theorem 1. For the correct key k
⇤, we have the inequality

II(X,Y
⇤) � I(X,Y

⇤). (32)

Proof: It is easily seen (as in the proof of Shannon’s capacity
formula) that

I(X;Y ⇤) = H(X)�H(X|Y ⇤) = H(X)�H(Z) (33)

 1

2
log

�
�
2
X/�

2
�
=

1

2
log

⇣
1 +

�
2
Y ⇤

�2

⌘
. (34)

The results follows at once from the well-known inequality
log x  (log e)(x� 1).

Thanks to Theorem 1 we can compare the performances
of MIA and IIA. In view of (3)-(5), it is clear that difference
values D(k⇤)�D(k) for k 6= k

⇤ play a important rôle. In [15],
the authors show that the first order exponent of the success
rate SR as the number of measurements increases is given by
the so-called success exponent SE ⇠ � log(1� SR):

SE = min
k 6=k⇤

D(k⇤)�D(k)

2V (k, k⇤)
(35)

where V (k, k⇤) = Var( bD(k⇤)� bD(k)) denotes the estimation
variance of the distinguisher difference for keys k, k

⇤.
The numerator in (35) is simply I(X,Y

⇤) � I(X;Y ) for
MIA and II(X,Y

⇤) � II(X;Y ) for IIA. Unfortunately, for
k 6= k

⇤ the calculation of I(X;Y ) or II(X;Y ) is intricate
as it requires the integration of Gaussian mixtures of the
form (25). Therefore, we rely on numerical integration. We
checked numerically that X = Y (k⇤) + Z will be much less
dependent on Y (k) than on Y (k⇤), due to the nonlinearity
of f [17]. The dominant term is then I(X,Y

⇤) for MIA and
II(X,Y

⇤) for IIA. Therefore, from Theorem 1, it appears that
the contribution of the numerator of the success exponent is
in favor of IIA.

However, due to the denominator in (35), a complete
characterization of performance also depends on the method
used to estimate mutual or interclass information from the
available data. With the help of numerical computation, we
have found that the normalizing factor V (k, k⇤) assumes very
comparable values for MIA and IIA, for a given estimation
method. Fig. 2 illustrates the resulting success exponent for
the same kernel density estimation of the p.d.f.’s p(x|y) and
the same leakage model (1).

Fig. 2. Success exponent for MIA (red) and IIA (black) as a function of the
SNR 1/�2 for the PRESENT implementation. Here f in (1) is the composition
of the inverse PRESENT substitution box and Hamming weight, a common
leakage model in the side-channel analysis literature [3]–[5].

From the figure we expect IIA to outperform MIA for
relatively low noise. For small SNR, however, the curves tend
to the same asymptote.

VI. SIMULATION RESULTS

We carried out both attacks MIA and IIA and computed
the resulting success rates over a set of 230 independent
experiments for � = 1 and 120 independent experiments
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for � = 4, where the secret key is chosen randomly in each
experiment. The same leakage model, kernel density estimation
of p.d.f.’s and data set were used in both cases to provide a fair
comparison. We have also computed error bars as suggested
in [10]: since the success rate SR follows a binomial distribution
for multiple retries R with deviation � =

p
SR(1�SR)

R , we
obtain confidence intervals of the form [SR� �, SR + �]. that
are drawn as vertical error bars in Fig. 3.

(a) �2 = 1

(b) �2 = 16

Fig. 3. Success rate for MIA (red) and IIA (black) for the PRESENT
implementation (same leakage model as in Fig. 2).

Fig. 3 shows that IIA reaches the threshold of success rate
= 90% before MIA. As predicted by the theoretical study of
the preceding section, the difference between MIA and IIA is
smaller for low SNR than for high SNR. Thus, the empirical
results confirm the theoretical ones.

VII. CONCLUSION

A new information-theoretic side-channel distinguisher based
on interclass information is investigated in relation to mutual
information. A theoretical comparative study of MIA and IIA
is carried out and validated by simulations. It is shown in
particular that IIA can outperform MIA for large values of
SNR. To our knowledge, this is the first time that a fairly
complete theoretical comparison between two information-
based side-channel distinguishers can be carried out.

Interclass information is similar to mutual information but
uses a different comparing strategy between the underlying
conditional distributions, which can make it more sensitive to

dependence. As such, it appears as an interesting information-
theoretic quantity on its own for which we are not aware of
any previous application to a practical problem.
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[13] D. P. Palomar and S. Verdú, “Lautum information,” IEEE Trans. Inform.
Theory, vol. 54, no. 3, pp. 964–975, 2008.

[14] A. Thillard, E. Prouff, and T. Roche, “Success through Confidence:
Evaluating the Effectiveness of a Side-Channel Attack,” in CHES, ser.
Lecture Notes in Computer Science, G. Bertoni and J.-S. Coron, Eds.,
vol. 8086. Springer, 2013, pp. 21–36.

[15] S. Guilley, A. Heuser, and O. Rioul, “A Key to Success – Success
Exponents for Side-Channel Distinguishers,” in Progress in Cryptology
- INDOCRYPT 2015 - 16th International Conference on Cryptology in
India, December 6-10 2015, Bangalore, India.

[16] A. Moradi, N. Mousavi, C. Paar, and M. Salmasizadeh, “A Comparative
Study of Mutual Information Analysis under a Gaussian Assumption,” in
WISA (Information Security Applications, 10th International Workshop),
ser. Lecture Notes in Computer Science, vol. 5932. Springer, August
25-27 2009, pp. 193–205, Busan, Korea.

[17] E. Prouff, “DPA Attacks and S-Boxes,” in Fast Software Encryption, ser.
LNCS, vol. 3557. Springer-Verlag, february 2005, pp. 424–441, paris,
France.

2016 IEEE International Symposium on Information Theory

809


