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Figure 1: The 3-point-lighting technique (on the left) is a classical cinematic rule to place lights around a subject. Playing with the lights
position, size, and flux considerably impacts the aesthetics and atmosphere of a scene (in the middle). We propose a technique that automati-
cally computes the parameters of a 3-point-lighting setup made of area lights, given the reference image in the middle, to generate the image
on the right in a virtual environment.

Abstract
The placement of lights in a 3D scene is a technical and artistic task that requires time and trained skills. Most 3D modelling
tools only provide a direct control of light sources, through the manipulation of parameters such as size, location, flux (the
perceived power of light) or opening angle (the light frustum). Approaches have been relying on automated or semi-automated
techniques to relieve users from such low-level manipulations at the expense of an important computational cost. In this paper,
guided by discussions with experts in scene and object lighting, we propose an indirect control of area light sources. We first
formalize the classical 3-point lighting design principle (key-light, fill-lights and back/rim-lights) in a parametric model. Given
a key-light placed in the scene, we then provide a computational approach to (i) automatically compute the position and size
of fill-lights and back/rim-lights by analyzing the geometry of 3D character, and (ii) automatically compute the flux and size of
key, fill and back/rim lights, given a sample reference image in a computationally efficient way. Results demonstrate the benefits
of the approach on the quick lighting of 3D characters, and further demonstrate the feasibility of interactive control of multiple
lights through image features.

CCS Concepts
•Computing methodologies → Computational photography; •Human-centered computing → User centered design; •Ap-
plied computing → Media arts;

1. Introduction

Lighting entities in 3D environments is a central concern for who-
ever wants to bring an aesthetic and emotional dimension to an
image. In real photography and cinematography, there are many
guiding principles to lighting (e.g. Rembrandt lighting, 3-point and
4-point lighting) [Wis12]. Surprisingly, most 3D modelling tools
do not propose a strong support in this lighting stage other than di-

rect interaction with each of the lights low level parameters. Hence,
individually placing each light and controlling its parameters is a
complex endeavor that requires advanced skills and expertise.

To ease this creative stage, the research community has been
proposing interactive or automated light placement techniques.
They commonly rely on an inverse-lighting approach: the user
specifies the features of his desired lighting, and a solver deter-
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mines an appropriate set of lighting parameters (position, orien-
tation, flux, color of lights). Approaches are considered as lo-
cal when the user controls local image features such as the po-
sitions or sizes of shadows and highlights, or the shading color
of lit areas [SDS∗93, PBMF07, Pel10]; or global when the user
controls global image features, e.g. histogram of luminance or
contrast [KPC93, CdAS12, FB14]. Lighting-by-example is another
class of approaches that mixes local and global approaches; it relies
on analyzing features from a reference image , and then compute
light parameters to obtain a lighting style as close as possible to the
reference image (e.g. encoded through an histogram of image lumi-
nance [HCB16] or an image decomposition into wavelets [HO07]).

The main issue of such inverse-lighting approaches is the com-
putational cost of rendering and evaluating the image features each
time a light parameter evolves. Optimization techniques require to
extensively evaluate the cost function expressed as a distance in
terms of these image features. This cost may be reduced through
the use of simplified light sources (point, spot or directional lights)
compatible with rasterization rendering, at the expense of lowering
the realism of the computed images.

The challenge is hence to reduce the practical complexity of au-
tomated light placement, while at the same time considering more
complex light models such as area lights commonplace in real light-
ing stages. To address this challenge, we first propose to reduce the
general problem of light placement to a 3-point light setup arranged
around a subject (see Figure 1). This setup is composed of a number
of key-lights – they represent the main source of light –, fill-lights –
their role is to control shadows intensity of areas not lit by the key-
lights–, and back/rim-lights – their role is to highlight the silhouette
of a subject. Second we propose to rely on complex light sources,
namely area lights, for which real-time rendering techniques have
been proposed [HDHN16, LDSM17], hence reducing the cost of
evaluating image features. And third, we adopt a two stage solving
process that consists in first computing light positions and orien-
tations, and second optimizing lights size, opening angle and flux.
Our process can (i) automatically compute how many fill-lights and
back/rim-lights are needed, together with their best placement, by
analyzing the scene layout and the 3D geometry of the subject; and
(ii) automatically compute the size, opening angle and flux of each
area light source, given a set of desired image features extracted
from a reference image. In addition, we provide the user with an
interactive control of the key-light position; each change triggers
the re-computation of the fill-lights and back/rim-lights.

Our contributions are:

• an indirect manipulation technique that enables a quick re-
positioning and re-orienting of area lights using a 3-point cin-
ematic lighting technique;
• a two-stage computation method which automatically deter-

mines the number, position, orientation, size, opening angle and
flux of fill-lights and back-lights, given one or more key-lights.
It mixes a geometric analysis with a stochastic numerical opti-
mization;
• an objective function driven by a lighting-by-example approach.

It compares the distribution and gradient of image luminance.

2. Related work

Lighting is a key element in photography/cinematography [Ada56,
DeM59, Mal92, Las00, Sip10] and computer-generated contents
[Wis12]. Choices in lighting aesthetics conveys the mood or at-
mosphere in a picture or in a story. In real or virtual environments,
professional visual content creators rely on complex lighting se-
tups, the design of which is highly technical and tedious due to the
large number of parameters to control and to coordinate for each
light source (e.g. type of light, position, orientation, shape, size,
aperture, flux, falloffs, color). The user must also determine how
many lights are needed.

An extensive body of work has been devoted to tackling inverse-
lighting problems, first introduced by Kawai et al. [KPC93]. All
inverse-lighting methods share the common goal of computing
a lighting setup, that can produce an image that corresponds as
closely as possible to a desired lighting. Their differences can be
analyzed along their specification of a desired lighting [PP03]: (i)
Global methods, (ii) Painting-based methods (which we also refer
to as local methods), (iii) Lighting-by-example based methods and
(iv) Perception-based methods.

Global methods often tackle light source placement or flux prob-
lems in architectural design applications [CSFN11,CdAS12,FB12,
FB14]. In this context, the lighting aesthetics in the rendered image
is not a priority. Instead, the desired lighting is often specified as
a set of statistical lighting features [KPC93] (e.g. mean radiance,
maximum non-uniformity, or radiance variance). These methods
proceed by minimizing an objective function built as a weighted
linear combination of these statistical lighting features; the user role
is then reduced to specifying all weights. Such global methods are
not well-suited for the design of a precise image lighting aesthetics.

Painting-based methods allow a more precise control of lighting
details. A user directly paints desired lighting effects onto 3D ob-
jects. In the method proposed by Schoeneman et al. [SDS∗93], the
user inputs a single target radiosity vector by painting on the initial
rendered image of the scene. Their fully automated optimization
method then addresses the flux problem for a predefined number
of lights (their positions and orientations are considered as fixed).
Pelaccini [PBMF07] proposed an iterative painting-based approach
where the user can interactively paint lighting effects (i.e. add ra-
diance) onto objects, with brushes. He can then choose which light
(either an added light or an existing light) and which parameters
to consider in the optimization. This greatly reduces the computa-
tional complexity. Then according to each new painted stroke, the
user can iteratively refine the desired lighting. Their system tack-
les both the flux and placement problems. However, their system
greatly relies on the user artistic skills; in particular such a system
is not able to automatically determine when to add or remove a
light, or which sub-set of the parameters to optimize. Such inter-
active methods can then be time-consuming and tedious to use, as
mentioned by Pellacini in [KP09]; according to him, such painting-
based methods can actually appear less intuitive to use than indirect
control methods. Moreover, painting-based methods are not well-
suited for the lighting of animated contents.
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Lighting-by-example methods address the main limitations of
global and local approaches. Their central idea is that the desired
lighting is provided as a reference image (a real image or a render
of another 3D scene) or directly as another, already lit, 3D scene.
Zupko and El-Nasr [ZEN09] ask the user to choose an image of
an illuminated sphere that describe their desired image aesthetics.
The target image is thus independent of the scene but limited to
an image of a single sphere in front of a uniform background. Ha
et al. proposed to define the desired lighting aesthetics with any
image [HLCO10]. They encode the input lighting aesthetics as a
wavelet decomposition of the radiance in the image. Their system
then tries to optimize the lights in a new scene so as, when render-
ing this scene, the rendered image has a similar wavelet decompo-
sition. The success of their technique is however very dependent to
the layout of objects on the screen. Léon et al. [LGCB14] instead
extract statistical features (e.g. mean and variance luminance) from
the input image. They then try to minimize the distance between the
reference and output images according to these statistical features.
Only the opening angle and flux of the light (a spotlight source)
are accounted for in their optimization process. They use a clas-
sic 3-point-lighting placement setup, which they explain is enough
to achieve most of lighting aesthetics. In a way similar, Hudon et
al. [HCB16] use a cost function computed as a cosine distance be-
tween the luminance histograms of the reference and rendered im-
ages. Their approach also differs in how they approach the choice of
the number of lights. Their light source placement method is made
of two steps: (i) they place a set of around ten lights onto a sphere
surrounding the lit object, for which they optimize the flux, then
(ii) they put off all lights for which the contribution is too small.

Perception-based methods , such as [SL02, WVBT16] deal with
inverse lighting problems to address non-aesthetic features, more
related to the proper perception and understanding of the shape or
fine details of an inspected 3D object. They are often targeting sci-
entific visualization applications. Though we do not precisely tar-
get this type of applications, a method close to ours is Wambecke et
al. [WVBT16] which proposes a fast geometric heuristic inspired
by 2-point-lighting techniques. They offer a simple heuristic, based
on the analysis of an object’s geometry, allowing to place both a
key-light and a fill-light to maximize the perception of the object’s
shape.

Discussion To our knowledge, we provide the first inverse-lighting
technique to place area lights using a real-time rasterization engine.
Our approach nicely mixes the advantages of indirect control pro-
posed by painting-based methods and lighting-by-example meth-
ods, while optimizing in parallel area lights flux, size and position.
First, the user can specify where to place the key-light in screen
space (in a way similar to [PBMF07]). Second, and conversely to
local methods, the user can provide any reference image as input
to refine the desired aesthetics (in a way similar to [LGCB14]).
Third, our method uses photographic guiding techniques (as in
[WVBT16]) to model lights placement.

3. Overview

Our overall objective is to assist creatives in the design of a lighting
setup around a 3D subject. The inputs of our system are (i) a single

Figure 2: The design of our 3-point light setup using area lights.
The Back/Rim-light is designed in a way that it is placed behind the
subject as done in real-life photography/cinematography. Note that
our model is designed to handle multiple key-lights, back-lights or
fill-lights.

3D model (e.g. a character or an object) with no background, (ii)
a camera viewing the 3D subject and (iii) a reference image that
represents the desired lighting style. Our system analyzes the ref-
erence image, the object’s geometry and the current placement of
one or multiple key lights, to automatically compute, as an output,
the placement of a collection of lights (fill-lights and back-lights).

To solve this light placement problem, we first propose a com-
pact representation of the 3-point-light setup (see Section 4). We
then determine the number, positions and orientations of fill-lights
in this setup, so that most of the object parts visible from the cam-
era, but not lit by a key-light, are then lit by at least one fill-light.
We analyze the object’s geometry to select all normals of a mesh
triangle that are both back-facing the key-light and front-facing the
camera. For this set of normals, we then use a k-means clustering
on these normals. We first determine the appropriate number of fill-
lights and, for each computed cluster, we create one fill-light (see
Section 4.2).

In a second stage, given the camera and object’s positions, and
the object’s geometry, we place a specific back-light rig so that four
back/rim-lights are placed (i) outside the camera’s frustum, and (ii)
behind the subject (see Section 4.3).

In a third stage, we use a numerical optimization process to au-
tomatically improve the object’s lighting style. Given an example
lighting style provided as a reference image, we optimize the size,
opening angle area and flux of each light source (for both the key-
lights, the fill-lights and the back-lights, see 5.2). The cost function
we minimize accounts for the distances between the histograms of
luminance and the histogram of the gradient of luminance in the
reference image and the render of the scene.
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Light type Manipulation steps Optimization steps Re-computed dynamically
key-light d, θ, ϕ, a, s, λ, f , c f , s, λ w, h, q
fill-light λ, c f , s, λ w, h, q
rim-light c f w, h, θ, ϕ, q

all rim-lights d, σ, λ d, σ, λ

Table 1: Our parametric model: all lights are rectangular area lights, parameterized through their position (distance d, azimuth θ and elevation
ϕ), orientation q, width w and height h, flux f and color c. We also consider design parameters such as the light aspect a (as the width/height
ratio), its size s (as a scaling factor enforcing this aspect ratio). Note that for rim-lights, instead of controlling the size and aspect ratio of each
light individually, we use a span parameter σ; its role is to constrain the width of side rim-lights and the height of top/ bottom rim-lights to
be equal to this span value.

Figure 3: 2D top view of our light setup. Key and fill-lights are
defined relatively to the camera-subject axis, using spherical coor-
dinates, with the back/rim-lights are tangent to the camera frustum.
Lights are implicitely oriented towards the subject.

4. A compact 3-point-light model

Our 3-point lighting setup is founded on several hypotheses. First,
we use three types of light sources: key-lights, fill-lights and
back/rim-lights. All three types are represented as rectangular area
lights, of width w and height h. An area light has a flux f and a color
c. Second, every light is oriented so that it always faces the subject
(see Figure 3), which is abstracted as a single 3D point. Hence, in
our model, a light position is represented through spherical coordi-
nates – it is located at distance d, azimuth θ and elevation ϕ –, while
its orientation q is determined in a way similar to a camera look-at
rotation. Third, we consider an opening angle λ, that controls the
solid angle of its emitted flux.

To provide users with a more intuitive control over the light
setup, we introduce some design parameters: the light aspect ratio
a, equal to the width/height ratio; the light size s, a scaling factor
from which we can determine a width and height that enforces a
fixed aspect ratio. For rim-light, we introduce a light span σ. As
illustrated in 2, rim-lights are constrained in terms either of their
height, or their width. The light span controls the value of the other
unconstrained parameters; in our model, all rim lights are finally

constrained to be at the same distance of the camera and have the
same span.

4.1. Interactively placing key-lights

When manipulating a key light, the user automatically triggers the
recomputation of all the other light positions. To first position a key
light in the environment we rely on a spherical model centered on
the subject. The radius of the sphere is controlled by the user to
adjust the distance of the light. Manipulating the light then consists
in moving it onto this sphere. Two simple metaphors are proposed:

ArcBall Light Control . We take inspiration from the Arcball
metaphor for controlling cameras, and we adapt it to offer an intu-
itive means to manipulate key-lights. As the user drags the mouse
(i.e. left-right or up-down), the selected key-light is rotated around
the subject accordingly. The controlled light naturally remains at
the same distance to the subject, and is re-oriented to always face
toward the sphere center.

Painting-based Light Control . We also take inspiration from
previous painting-based lighting interfaces to offer a means to spec-
ify directly, in image space, the areas to be lit by a key-light. Our
method is designed to dynamically updated the key-lights position
on manipulation. As the user highlights an object area, we analyze
its geometry to select the set of visible vertices that are inside the
area to lit. The direction of the key light is simply computed as the
mean of all normals at these selected vertices.

4.2. Automatically placing fill-lights

Fill lights aim at softening or removing shadows produced by key
lights. In other words, they should lit areas visible by the camera
but which remain unlit after the key lights placement stage. The
process is composed of three steps. First, given the mesh geometry
of the subject and the current placement of the key lights and the
camera, we compute sub-meshes representing unlit areas. Second,
we compute the number of fill lights needed to lit these sub-meshes.
Last, we compute the placement of fill lights by using a clustering
on the vertex normals of these sub-meshes.

Computing the unlit areas . We start by extracting all vertices,
as well as their associated normals, from the subject’s mesh. We
then prune all vertices not visible from the camera (i.e. either back-
facing or located outside the camera’s frustum). We also prune all
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(a) (b)

(c) (d)

Figure 4: Creating the fill lights by (a) analyzing the geometry, (b)
extracting unlit areas visible from the cameras and their normals
(c) clustering the remaining normals (red and green normals are in
two different clusters) and (d) placing the fill-lights

vertices that are already lit by the key light. Here, we do not check
for self-occlusions of the mesh (note that this would be a costly
problem by itself) but solely use the normals at remaining vertices
and compare them against the direction of the key light; a vertex is
considered as lit only if the dot product of its normal and the key
light direction is negative.

Computing the number of fill lights Given the set of unlit ver-
tices, a naive approach would be to place a fill light in the direction
of the mean normal direction of all unlit vertices. However, in many
cases the the subject’s geometry is too complex, which prevents a
single fill light from being able to lit all sub-meshes. To solve this
problem of better covering unlit areas, we perform a standard k-
means clustering on this set of unlit normals. We here account for
the variation of unlit normals, and compute the number of clusters
(i.e. the number of fill lights, k) through the following formula

k =
kmax +1

N

N

∑
i=1
‖ni− n̄‖

where ni is the normal at the ith unlit vertex, n̄ is the mean normal
vector at unlit vertices and kmax is a user-specified threshold on the
number of clusters. We experimentally found that a maximum of
three fill lights is enough in most cases. Figure 4 shows an example
of clustering obtained with our technique.

Placing the fill lights Given a set of directions, the fill lights are
placed at the same distance as the key light. Their sizes and flux are
computed proportionally to the size and flux of the key light.

4.3. Automatically placing back/rim-lights

The back light’s role is to highlight a subject’s contour. Tradition-
ally, there are two ways to place a back light:

• either behind the subject along the camera’s axis so as to ensure
it is remains hidden by the subject;

• or behind the subject, on a side, so as to be fully outside of the
camera’s frustum.

Unfortunately, the magic of back-lights placed behind the target
rims only really occurs on complex surfaces like hair or wool that
capture the light and remain difficult to render in real time. Con-
versely, the second method is less sensitive to the quality of the
models and the textures. Following this main guideline, we pro-
pose to model our rim light as a light rig, made ,of four area lights.
These areas lights are placed behind the subject, so that one edge of
each area light is touching the corresponding plane of the camera’s
frustum; they are also oriented so as to light-to the subject, as illus-
trated in figure 3. This light rig allows a fine control on the rim ef-
fect, by adjusting the distance from the subject, the width, aperture
and flux of each individual rim light. While adjusting these design
parameters, our system can automatically compute or re-compute
the placement of the rim lights.

5. Automatic lighting style matching

Once a first 3-point-lighting setup has been computed, the user
can now refine the lighting style, by manually adjusting the set
of low-level light parameters such as their fluxes, sizes or open-
ing angles. This however remains a tedious task, which could also
rapidly break the 3-point-lighting guidelines. To remove the burden
of manually tuning all parameters we here propose an optimization
process which, based on our 3-point-lighting model, offers the user
with an efficient means to reproduce a lighting style.

5.1. Encoding and comparing lighting styles

To encode the lighting style of an image, we rely on a comparison
method similar to [HCB16]. They first define a desired lighting aes-
thetics by using a reference image. Then then perform an optimiza-
tion on lights parameters by relying on a cosine distance between
the histograms of luminance in the reference and rendered images.
Their method gives good results in many scenarios but fails to cap-
ture some important geometric information. Figure 5 illustrates this
limitation. While the two images have very similar histograms of
luminance, their lighting aesthetics are clearly different.

To overcome this limitation, we extend their method by also us-
ing the gradient in the image to enrich the representation of a light-
ing aesthetics. We not only calculate an histogram of luminance
but we also calculate two other histograms, respectively capturing
the horizontal and vertical gradient of luminance. These additional
histograms provide valuable geometric information on the object’s
shading in the image; indirectly, they also provide clues on the rel-
ative placement of lights. Figure 5(d) demonstrates the difference
in gradient histograms.

5.2. Optimizing the lighting style

The main advantage of our 3-point-light model is that it allows ma-
nipulating or searching a lower-dimensional parameter space. This
is valuable for interactively controlling a full 3-point-lighting setup
by simply manipulating the key-light (as presented in Section 4). In

submitted to Pacific Graphics (2018)



6 Q. Galvane, C. Lino, M. Christie, R. Cozot / Directing the Photography

(a) (b)

(c) (d)

Figure 5: Comparison of two images rendered under two different
lighting conditions (a) and (b). The two images present a similar
luminance histograms (c) but different gradient histograms (d).

this new optimization step, the parameter space to search is reduced
to the following subset of parameters:

• The flux, opening angle and size for the key-light;
• The flux, opening angle and size for each fill-light separately;
• The distance, span and opening angle common to all rim lights;
• The flux of each rim-light separately;

The dimension of our search space is then N = 3k+10, where
k is the number of placed fill-lights. By considering that kmax = 3,
the search space has at most 19 parameters.

We cast our style-matching problem into a minimization pro-
cess in this sub-space. We define the objective function f (i,r) to
minimize as a linear combination of the cosine distances between
histograms H extracted from the reference (input) image r and the
current rendered image i.

f (i,r)=w0.Ψ(Hi
L,Hr

L)+w1.Ψ(Hi
∇v,H

r
∇v)+w2.Ψ(Hi

∇h,H
r
∇h)

where HL, H∇v and H∇h are respectively the histogram of
luminance, the histogram of vertical gradient and the histogram
of horizontal gradient. Ψ is the cosine distance function, which
takes two histograms as input, and outputs their dot product (an
histogram being viewed as a real-valued vector). In the current im-
plementation, weights w0, w1 and w2 have been set respectively
to the obvious values of 1, 0.5 and 0.5. This equally balances the
importance of the luminance and the gradient of luminance in the
optimization process.

To account for lights colors, we also extend this optimization
scheme by using a separate histogram on each channel, instead of
a single histograms of luminance. In the above equation, we then
replace w0.Ψ(Hi

L,Hr
L) by

w0,R.Ψ(Hi
R,Hr

R)+w0,G.Ψ(Hi
G,H

r
G)+w0,B.Ψ(Hi

B,Hr
B)

whereHR,HG andHB are the histogram of the red, green and blue
channels, respectively.

To solve this minimization problem, we rely on a Particle Swarm
Optimization (PSO) solver. This allows efficient computations
while avoiding many local minima. For comparison purposes, we
also tested with other search algorithms such as the gradient de-
scent or the Nelder Mead algorithms, but found that they often
failed to avoid local minima. To improve the performances of our
PSO solver, we strategically add a set of warm positions in addi-
tion to the set of randomly sampled initial particles positions. We
generate this set of warm positions by successively turning on only
one light while other lights are turned off. The results of this opti-
mization stage are presented in section 9.

6. Implementation

We developed our lighting assistant within the Unity3D game en-
gine. To speed up mesh and image processing, we heavily rely
on general-purpose GPU programming; in the current implemen-
tation, we use the Unity’s compute shaders features. To compute
histograms, we only render the subject. This allows to be agnostic
of the background and avoid interference. This hypothesis however
implies that the input images must either be detoured or taken on a
black background. All our experiments (detailed in section 9) were
conducted with Unity 2018 on a Core i7 @ 3.1GHz and a NVidia
Quadro M2200.

7. Results

We tested our lighting design system on a variety of scenes, with
different subjects and different mesh resolutions. In this section,
we evaluate the performances of our interactive controller. We also
evaluate the quality and accuracy of our lighting style optimizer,
and validate the convergence of the particle swarm optimizer in
tested scenes. Last, we evaluate the quality of our output images.
All our results are presented below. We also provide a companion
video showing the tool in action†.

Qualitative evaluation To evaluate the quality of both our inter-
active tool and our optimizer, we tested our system on a large set
of example meshes and initial lighting configurations. Figure 6
presents some of these results; additional examples are also shown
in the following sections. Using different reference images from
different viewpoints and different initial lighting setups as input –
created by using our 3-point-lighting interactive tools – our results
not only show that our 3-point-lighting model can efficiently as-
sist the user in appropriately creating and placing complementary
light sources, but also that our optimization process is successful in
reproducing a desired lighting aesthetics.

Convergence and efficiency of the method As shown in Figure 7,
our system can also properly improve an existing lighting setup
to match the luminance histogram of the rendered image with the
histogram of the reference image. Figure 7e shows the evolution
of our objective function for each particle of our PSO. One can
clearly observe that, by using our objective function, the optimiza-
tion algorithm quickly converges toward a good solution after a few
iterations only.

† http://cinematography.inria.fr/publications/automatic-lighting/
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(a) Reference image (b) After setup (c) After optimization

Figure 6: Example of images produced with our tool. The system
takes as input (a) a reference image, (b) let the user interactively
place the key light while optimizing the placement of fill and rim
lights and (c) optimize the lighting parameters to match the style of
the reference image.

Figure 8 presents another interesting result. Given the same ref-
erence image but different initial lights placements – with key-
lights placed differently and therefore fill-lights and back-lights
also placed in another configuration – our optimization process is
still able to converge to a final lights placement which is very close.

Expert feedback Our system was demoed and tested by both a
professional director of photography and a film director. They both
appreciated the use of the three-point lighting technique and the ef-
fort put in the formalization of this principle. They were especially

(a) Reference image (b) Initial image (c) Rendered image

(d) Luminance histogram

(e) Optimization

Figure 7: From a reference image (a) and an initial lighting configu-
ration, our system is able to reproduce the desired lighting aesthetic
(c) by matching luminance histograms (d). The optimization pro-
cess quickly converge after a few iterations (e).

(a) Reference image (b) After setup (c) After optimization

Figure 8: Using the same reference image (a) but starting from dif-
ferent lighting conditions (b) our system is able to converge to sim-
ilar solutions (c).

impressed with the results and thought of many different applica-
tions for our tool. The film director would take advantage of our
system mostly for previsualization purposes, to test different light-
ing styles based on reference images – a common practice in the
early stages of a movie production. The director of photography
found the tool very promising and suggested to add additional fea-
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tures to be able to use light sources based on existing equipment
(i.e. led panels, spots, reflectors, etc.), with their actual specifica-
tions. While they both agreed that the lighting and shading pro-
duced by the game engine was not completely realistic, they be-
lieve the results are sufficient and could prove very useful in their
respective fields.

Computation times As shown in Figure 9, our two interactive
light control tools (light painting and automatic fill-lights place-
ment) run easily in real-time in most cases. When processing highly
detailed meshes, the framerate may drop down during some ma-
nipulations, but remains interactive (around 10 frames per second
in the worst cases). When processing the 86k vertices mesh, the
average framerate was around 30 frames per second.

Figure 9: Evolution of the computation time (in seconds), taken
each frame, needed to place the key-light and the fill-lights. The
graph displays the results for different subjects with different mesh
resolutions.

When optimizing the lighting aesthetic, the computation time
depends on the parameters of the PSO solver and especially the
number of particles. In our case, we set the size of the swarm to
20 particles. As shown in Figure 7, with this configuration it only
takes a few iterations to converge. On average, it takes between 5
to 10 iterations to reach convergence, where each iteration takes
around 0.4 seconds to compute – on average, 21 ms per particle per
iteration.

8. Limitations

As an implementation of the 3-point lighting method, the technique
presented in this paper suffers from its limitations. When placing
the lights and optimizing over their parameter space, our tool only
focuses on the subject. While ignoring the background is a rela-
tively common practice, extending our solution to the 4-point light-
ing method constitute a very interesting challenge to be addressed
in future work. Regarding the optimization process, the use of the
histogram of the gradient in the objective function proved to be
be efficient in many cases. However, this method is sometimes not
sufficient when dealing with very smooth shading. Other heuristics
could be investigated to better account for the orientation of the
light and its impact on the shading.

In this paper, we made the assumption that the object in the refer-
ence image and the 3D model share materials of similar nature. Us-
ing different materials will affect the gradient histograms of the im-
ages and consequently the results. With specular objects especially,
slight variations in the materials property makes the optimization
process less accurate as well as the visual comparison more diffi-
cult (see Figure 10).

(a) Reference (b) Plastic

(c) Glass (d) Wood

Figure 10: Lighting style optimized for a reference image (a) using
different types of materials for the rendered object (b), (c) and (d).

9. Conclusion

This paper has presented an inverse-lighting technique allowing to
easily manipulate area lights to lit 3D subjects in virtual environ-
ments, and to reproduce a given lighting style provided as a ref-
erence image. We have provided a compact representation for the
placement of complementary lights, that encodes a practical and
well-established lighting technique in photography (the 3-point-
lighting). We have proposed a hybrid optimization solution that can
efficiently compare the lighting features in a reference and a render
of the current scene to properly place lights and optimize their pa-
rameters so as to reproduce the input lighting style. Our solution
nicely couples interactive control techniques, 3D geometry and im-
age processing techniques, together with recent real-time rendering
of polygonal area lights. Our approach represents a first step toward
the design of more complex lighting setups. In particular, we think
it will open the perspective of computing lighting setups for more
complex scenes, typically with fore-ground/back-ground objects,
and for animated scenes.
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