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Abstract—We propose a semi-supervised multichannel speech
enhancement system based on a probabilistic model which as-
sumes that both speech and noise follow the heavy-tailed multi-
variate complex Cauchy distribution. As we advocate, this allows
handling strong and adverse noisy conditions. Consequently, the
model is parameterized by the source magnitude spectrograms
and the source spatial scatter matrices. To deal with the non-
additivity of scatter matrices, our first contribution is to perform
the enhancement on a projected space. Then, our second contri-
bution is to combine a latent variable model for speech, which
is trained by following the variational autoencoder framework,
with a low-rank model for the noise source. At test time, an it-
erative inference algorithm is applied, which produces estimated
parameters to use for separation. The speech latent variables are
estimated first from the noisy speech and then updated by a gra-
dient descent method, while a majorization-equalization strategy
is used to update both the noise and the spatial parameters of
both sources. Our experimental results show that the Cauchy
model outperforms the state-of-art methods. The standard devi-
ation scores also reveal that the proposed method is more robust
against non-stationary noise.

Index Terms—Multichannel speech enhancement, multivariate
complex Cauchy distribution, variational autoencoder, nonnega-
tive matrix factorization

I. INTRODUCTION

Multichannel speech enhancement aims to extract speech
from an observed multichannel noisy signal [1]. Usually, para-
metric models are used for the speech (target) signal, the addi-
tive noise, and the way both are captured by the microphones.
The core feature of such models is to allow the reconstruction
of the target signal from the noisy mixture, provided that the
parameters are well estimated. The standard example is having
sources parameterized by their spectrograms, and reconstructed
through soft-masking (Wiener-like) strategies.

Deep neural networks (DNNs) have been increasingly used
in this context [1]-[4]. Most approaches train denoising DNNs
to estimate the model parameters, e.g., source spectrograms
or the time-frequency mask of one or all of the sources. In
this case, the training employs paired data consisting of noisy
speech and clean speech. Although it has been shown that
denoising DNNs could be robust to unseen environments [5],
there is still a concern that they are not adaptive enough to
unseen noises.
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This issue has recently been addressed by several studies on
semi-supervised speech enhancement [6]-[10]. The core idea
of these studies is to formulate a probabilistic generative model
in which both speech spectrogram and noise spectrogram are
modeled by latent variable models. The speech spectrogram
model is trained as the decoder in the variational autoencoder
(VAE) framework [11], while the noise spectrogram is modeled
by a nonnegative matrix factorization (NMF) [12] approach.
The speech model is trained with clean speech only, thus
independent from the actual noise that will be found in the
observations at test time. Indeed, the core feature of this strategy
is to let the noise parameters be estimated and adapted at test
time, so that it is flexible and may achieve good denoising
performance even in adversarial conditions not met at training
time. In the case of multichannel enhancement [8], [9], the
spatial parameters are also estimated at test time.

Most of these methods [6]-[9] tackle such a whole estimation
problem under a Gaussian probabilistic setting. Although it
is convenient because it leads to straightforward inference
methods, it has the drawback of being sensitive to initialization
and prone to be trapped in a local minimum [13].

As opposed to their Gaussian counterpart, heavy-tailed prob-
abilistic models allow for outcomes that are far away from the
expected values [14], [15]. From an inference perspective, this
means that unlikely observations will not have a detrimental
impact on the parameters, yielding robust estimation. Among
them, non-Gaussian «-stable models are remarkable because
they also satisfy the central limit theorem [16], which means
that a sum of a-stable random vectors remains «-stable. This
is an interesting feature in a context of speech enhancement
where additive sources are combined to yield the observed
mixture. Notwithstanding their attractive features, the main
weakness of these distributions is the absence of a closed-form
probability density function (PDF), except for « = 0.5 (the
Lévy distribution), & = 1 (the Cauchy distribution), and o = 2
(the Gaussian distribution).

An option is to express an «-stable random variable as con-
ditionally Gaussian [16]. This may always be done in the scalar
(single-channel) case and only in some cases for multichannel
data. Put it simply, the trick is to write an a-stable random vari-
able as a Gaussian variable with a covariance that is multiplied
by a random impulse variable, distributed as a positive 3 -stable
random variable. This makes it possible to use the classical



Gaussian methodology, provided that some specific method is
found to estimate the impulse variables, notably some Markov
chain Monte Carlo (MCMC) strategy [17]-[19]. However, the
MCMC algorithm is often computationally demanding at test
time, and [20] proposes an approximation to construct filters
without requiring the estimation of impulse variables. Still, this
strategy does not provide any convenient cost function to use
for parameter estimation, which is inconvenient in our case.

In line with the present study, combining a VAE and general
a-stable distributions has recently been proposed in [10]. It suf-
fers from expensive MCMC schemes. A simplified approach
undertaken in [21] is to focus on the Cauchy o = 1 case,
for which closed-form expressions of the likelihood are avail-
able. However, this study is limited to single-channel source
separation based on low-rank source models.

In this paper, we go beyond related work in this respect and
introduce a semi-supervised multichannel speech enhancement
method that uses a VAE-based speech model and a low-rank
noise model, that both parameterize Cauchy models for the
sources. To the best of our knowledge, this is the first study
that uses a computationally-tractable heavy-tailed model for
multichannel sources unlike previous studies that use a heavy-
tailed model for multichannel mixtures [22], [23]. Additionally,
we show how deep latent variable models may be combined
with more classical low-rank models in this setting.

II. PROBABILISTIC FORMULATION
This section formulates a probabilistic model for the pro-
posed Cauchy multichannel speech enhancement method.
A. Multivariate Complex Cauchy Distribution

Let y be a complex random vector of dimension K. Then,
y ~ Cc(y|p, V) follows a circularly-symmetric multivariate
complex Cauchy distribution iff. its probability density is

Puv®) = Axy (1+ - Vi -m) L
where
K 1
Arv =] (K —k+ 2) 7K det (V)" )
k=1

and .H, V and p in (1) respectively stand for the Hermitian
transposition, the positive definite scatter matrix and the loca-
tion parameter [24], [25]. Similarly to the Gaussian distribution,
a linear combination of Cauchy vectors remains a Cauchy vec-
tor. However, the tails of a Gaussian distribution are lighter
than those of a Cauchy one (see Fig. 1).

B. Spatial Model

We work in the short time Fourier transform (STFT) domain.
Let f € [1,F] and t € [1,T] be the frequency bin and time
frame indexes, respectively. Following the literature, we assume
that the observed mixture signal is a linear combination of
the sources. Considering speech and noise as the sources, the
STFT of a K -channel noisy speech x € CF*T*K i5 expressed
for each time-frequency (TF) bin ft as

3)

Xfr = x}t + x?t,

P(y)
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Fig. 1: Tails of unidimensional Cauchy and Gaussian PDF

where the speech x5, € C* and the noise x}, € CK are
assumed to follow a Cauchy distribution:

x5, ~ Ce(x%,|0,a%,R5),
x}, ~ Cc(x},|0,a%,RY),
with a%, € Ry and a%, € Ry are the sources” magnitudes,

while R% and R} are the K x K positive definite spatial
scatter matrices of the sources.
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C. Source Models

While the scatter matrices ch and RIJ} are left unconstrained,
specific models are picked for the speech and noise magnitudes.

First, the F-dimensional vector aj gathering the speech
magnitudes a%, for frame ¢ is assumed to depend on low-
dimensional latent variables written z; € R with D < F.
This mapping is given by a function called the decoder and
written a§ = 1(z;), parameterized by 6.

Second, the noise magnitudes a?t are modeled with a non-

negative matrix factorization (NMF) [26] as follows:
L
a?t = Zwﬂhlt for Vf,t, 5)
=1
where L is the number of basis vectors.

At test time, the key idea becomes to use the observed
mixture x to estimate the most likely latent vectors z; and
NMF parameters w and h as well as the scatter matrices. They
are then used in conjunction to &5 = ug(z¢) to separate the
signals with the technique presented in section II-D.

D. Projection-Based Wiener Filter

The Cauchy model above resembles its Gaussian counter-
part [27]. Instead of scatter matrices, the Gaussian model has
covariance matrices. The mixture covariance matrix is simply
a linear combination of the source covariance matrices. In this
case, given the model parameters, the multichannel Wiener fil-
ter can be used to extract the sources. Unfortunately, this linear
combination between scatter matrices is usually not satisfied
for the Cauchy model with K > 1.

We therefore propose to project the observation vectors
Xy € CX to the complex plane C. Let us consider M vectors
ug, - ,uy € CK and let

(6)

be the m"-projection of the observed signal Xf¢. As demon-
strated in [28], the random variable x,, ; is Cauchy distributed

Tmft = u,P,Ifot for Vm, f,t



and the following posterior mean of the projected speech 7, 7,
is tractable for all m, f, ¢

‘%izft £E [ng?t‘xmﬂa ‘I’] =

where
V3 =a5,ullR5u
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and @ 2 {a5,, a, RS, R} |.

We then deduce an estimator X%, of x%, by using UT, which

(®)

is the pseudo-inverse of U £ [ug,..., uM]H € CMxK.
. . . T
Xy = Ut [xift’ e 7xf71ft] ©)

An estimator i?t of x%}, can be computed in a similar way.
In this paper, in order to simplify the computation of (9), the
projector U is chosen to be unitary so that Ut = U.

III. PARAMETER ESTIMATION

This section explains how to estimate the parameters of the
probabilistic model proposed in Section II.

A. Training Phase

To train the speech decoder model pg (z), we adopt the VAE
framework [11]. For training, two DNNs are considered:

e An encoder that inputs aj and outputs two D-dimensional
vectors written p(a3) and o} (ay). Together, they define
the distribution of the latent vectors: g4 (z.|a;), defined
as N'(zi| s, (a,), Diag[o (a,)])

o A decoder that outputs two F'-dimensional vectors written
o (z¢) and v (z:), that together describe the distribution
of the speech magnitudes a$ given z, written py(aj|z;).
We detail that distribution later.

In any case, the model parameters 6 and ¢ are jointly opti-

mized by minimizing the negative log-likelihood (NLL):

“tnpaal) =~ [ 220220
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where KL[g||p] is the Kullback-Leibler (KL) divergence from
p to q [29]. The reparameterization trick [11] is used to obtain
z, given the encoder outputs p(a?) and o7 (aj).

For training, the observed magnitudes from a clean speech
dataset, aj’ct, are assumed to follow a real Cauchy distribution
Cr with location [pi9(z:)], € Ry and scale [yp(z:)]; € Ry:

pe(aj»t|zt) =Cr (a?t’ [,ug(zt)]f , [vg(zt)]f ) (1D

This complies with the a—spectrogram assumption for o = 1
[30]. Thus, the magnitude reconstruction loss £™, serving as

FC (128)
+ tanh

Infa,| _,| FC (512)

c RF + tanh

(a) Encoder
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cRP + tanh + tanh FCG13) 7,
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(b) Decoder

Fig. 2: The encoder and decoder of the speech VAE. ‘FC’
represents a fully-connected layer whose size is shown inside
the parentheses. The speech magnitude estimate is computed
from the decoder output a; = exp (In p).

a cost function for training the parameters 6, may be picked
as the negative log-likelihood (NLL):

FT s z 2
o o ) (hlh’a(Zt)]f +In <1 + (a5 [M;)( ) )) .
Tf,t:l V¥t
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Then, assuming a simple prior pg(z;) ~ N (2|0, 1), the reg-
ularization term £ [11] is computed as

D, T
., 1 ¢ s s s
o= ([uyat)ﬁ + (o (a))]7 — n[od (a})]7 — 1)-
d,t=1

(13)

B. Test Phase

As advocated above, the projected mixtures x,,s; are con-
sidered as isotropic complex random variables. They are thus
parameterized through a scale parameter ,/v,,7¢ and the nega-
tive log-likelihood is given by

MFT o 1
D (v) = Z §ln (Umft + \xmft|2> ~3 In (vynype), (14)

m, ft=1

where = denotes equality up to a constant.

At test time, the latent variables z; are initialized by sampling
from g4 (z¢| |x¢|), i.., by applying the encoder to the average of
the mixture magnitude spectrogram over channels. This in turn
provides an initial estimate p9(z:) for the speech magnitude a.
Then, the latent variables z; are updated by backpropagation
with a gradient descent method to minimize the cost function
(14). In this case, all parameters other than z;, including the
decoder parameters, are kept fixed.

For estimating the noise parameters, we adopt a majorization-
equalization (ME) strategy [26] as in [21]. Due to space con-
straints, we only provide here the multiplicative updates used
for the parameters w and h as follows:

- 1 D mt e, ¢

Wy SWrl n )

AR D hiey, r€myte
1 2mg o,

hlt — fhlt ! n ! ;
3wy, it

15)

(16)
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Fig. 3: Performance comparison in terms of PESQ (leff), STOI (middle), and SDR (right). Higher is better. The mean and the
standard deviation are respectively shown in white and black fonts.
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Similarly for noise parameter estimation, we define the esti-
mator 0}, = a’, R} for Je {s,n}, where a}, is provided by
the source models and R} = 3, ), ;uy a1t leads to

19)
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IV. EVALUATION

In this section, we compare the performance of three different
systems on a 5-channel speech enhancement task. Each of
them includes at least one multichannel nonnegative matrix
factorization (MNMF) spectrogram model [31]. The systems
include: (1) Cauchy VAE-MNMF, that we propose above; (2)
Gaussian VAE-MNMF, that is a system similar to ours, but
based on a Gaussian model [9]; and (3) Cauchy MNMF, that
is a semi-supervised multichannel Cauchy NMF, where the
speech magnitude is also modeled with an NMF with basis
vectors trained on clean speech beforehand. The Gaussian
VAE-MNMF system is provided by the authors [9].

The performance is measured by the signal-to-distortion ratio
(SDR) provided by the BSS-Eval toolbox [32], the Perceptual
Evaluation of Speech Quality (PESQ) score [33], and the Short-
Time Objective Intelligibility (STOI) score [34]. The SDR is
computed on the enhanced 5-channel speech, while the PESQ
and the STOI are computed on one of the channels.

A. Experimental Conditions

We consider the simulated training, development, and test
sets of the CHiME-4 corpus [5]. All data are sampled at 16
kHz. We use 7138 single-channel clean speech signals of the
training set for training the DNNs of the Cauchy VAE-MNMF
and the speech basis vectors of the Cauchy MNMF. Moreover,
we use 1640 single-channel clean speech signals from the
development set as the validation set for the DNN training.
The evaluation is then done on 10% of the full test set, i.e.,
132 randomly selected 5-channel noisy utterances (K = 5).

The STFT coefficients are extracted using a Hann window with
a length of 1024 samples and an overlap of 75% (F = 513).

The encoder and the decoder of the speech VAE for the
Cauchy VAE-MNMF is depicted in Fig. 2. These DNNs are
trained by backpropagation with the Adam update rule whose
learning rate is fixed to 1073 [35]. The update is done for
every minibatch of 8192 frames from 32 randomly selected
utterances. The gradient is normalized with threshold fixed
to 1 [36]. The weight normalization [37] is also employed.
The training is started with a warm-up technique [38] for 100
epochs and stopped after 50 consecutive epochs that failed to
obtain a better validation score. The latest model yielding the
lowest error is kept. These DNNs are comparable in size to
the ones used in the Gaussian VAE-MNMF.

For both VAE-MNMF methods, the latent variable dimension
of the speech model is fixed to D =32 and the number of bases
of the noise model is fixed to L =32. Similarly, for the Cauchy
MNME, the number of bases of both source models is fixed to
L=32. For the Cauchy MNMF and the Cauchy VAE-MNMF,
the dimension of the projector U is fixed to M =8. The NMF
parameters are initialized randomly and the coefficients 77, f
are initialized as 1. We consider 64 optimization iterations for
the Cauchy MNMF and 50 for both VAE-MNMF methods.

B. Experimental Results

Fig. 3 shows that the Cauchy VAE-MNMF globally outper-
forms the Cauchy MNMF and the Gaussian VAE-MNMF. It
provides an SDR improvement of 4.2 dB w.r.t. the Gaussian
VAE-MNMF. We also observe that the standard deviation of
the metrics is generally smaller for the Cauchy VAE-MNMEF,
suggesting that it has stronger robustness to noise.

As an illustration, we also displayed in Fig. 4 the log-
magnitude spectrograms of estimated speech obtained with
the Cauchy and the Gaussian VAE-MNMFs. We see that the
one seems less robust against non-stationary noise.

V. CONCLUSION

We proposed a speech enhancement system combining a
nonnegative matrix factorization (NMF) model for the noise
and a variational autoencoder (VAE) for speech, that is trained
and used under heavy-tailed probabilistic models. We derived
the whole training and inference strategy and gave the details
of the corresponding algorithms.
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I

n an evaluation on 5-channel mixtures from the CHiME-4

corpus, we found out that our proposed system achieves a
significantly better performance than its Gaussian counterpart,
yielding a 4 dB SDR improvement.

ACKNOWLEDGEMENT

We thank S. Leglaive for providing the code of [9].

[1]
[2]

[3]

[4]

[5

—

[6]

[7

—

[8

=

[9]

[10]

[11]

REFERENCES

E. Vincent, T. Virtanen, and S. Gannot, Eds., Audio Source Separation
and Speech Enhancement. Wiley, 2018.

A. A. Nugraha, A. Liutkus, and E. Vincent, “Multichannel audio source
separation with deep neural networks,” IEEE/ACM Trans. ASLP, vol. 24,
no. 9, pp. 1652-1664, 2016.

J. Heymann, L. Drude, and R. Haeb-Umbach, “A generic neural acoustic
beamforming architecture for robust multi-channel speech processing,”
Computer Speech & Language, vol. 46, pp. 374-385, 2017.

T. N. Sainath, R. J. Weiss, K. W. Wilson, B. Li, A. Narayanan, E. Variani,
M. Bacchiani, 1. Shafran, A. Senior, K. Chin, A. Misra, and C. Kim,
“Multichannel signal processing with deep neural networks for automatic
speech recognition,” IEEE/ACM Trans. ASLP, vol. 25, no. 5, pp. 965-979,
May 2017.

E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and R. Marxer, “An
analysis of environment, microphone and data simulation mismatches in
robust speech recognition,” Computer Speech & Language, vol. 46, pp.
535-557, 2017.

Y. Bando, M. Mimura, K. Itoyama, K. Yoshii, and T. Kawahara, “Sta-
tistical speech enhancement based on probabilistic integration of varia-
tional autoencoder and non-negative matrix factorization,” in Proc. IEEE
ICASSP, 2018, pp. 716-720.

S. Leglaive, L. Girin, and R. Horaud, “A variance modeling framework
based on variational autoencoders for speech enhancement,” in Proc.
IEEE MLSP, 2018.

K. Sekiguchi, Y. Bando, K. Yoshii, and T. Kawahara, “Bayesian multi-
channel speech enhancement with a deep speech prior,” in Proc. APSIPA,
2018, pp. 1233-1239.

S. Leglaive, L. Girin, and R. Horaud, “Semi-supervised multichannel
speech enhancement with variational autoencoders and non-negative
matrix factorization,” in Proc. IEEE ICASSP, 2019.

S. Leglaive, U. Simgekli, A. Liutkus, L. Girin, and R. Horaud, “Speech
enhancement with variational autoencoders and alpha-stable distributions,”
in Proc. IEEE ICASSP, 2019.

D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in
Proc. ICLR, 2014.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

(31]

[32]

[33]

[34]

[35]
[36]

(37]

(38]

D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788-791,
1999.

C. Boutsidis and E. Gallopoulos, “SVD based initialization: A head start
for nonnegative matrix factorization,” Pattern Recognition, vol. 41, no. 4,
pp- 1350-1362, 2008.

R. A. Fisher, “Applications of “Student’s” distribution,” Metron, vol. 5,
no. 3, pp. 90-104, 1925.

R. Martin and C. Breithaupt, “Speech enhancement in the DFT domain
using Laplacian speech priors,” in Proc. IWAENC, vol. 3, 2003, pp.
87-90.

G. Samoradnitsky and M. S. Taqqu, Stable non-Gaussian random pro-
cesses: stochastic models with infinite variance. Chapman and Hall/CRC,
1994.

S. Leglaive, U. Simsekli, A. Liutkus, R. Badeau, and G. Richard, “Alpha-
stable multichannel audio source separation,” in Proc. IEEE ICASSP,
2017, pp. 576-580.

M. Fontaine, F.-R. Stoter, A. Liutkus, U. Simsekli, R. Serizel, and
R. Badeau, “Multichannel audio modeling with elliptically stable tensor
decomposition,” in Proc. LVA/ICA, 2018, pp. 13-23.

U. Simgekli, H. Erdogan, S. Leglaive, A. Liutkus, R. Badeau, and
G. Richard, “Alpha-stable low-rank plus residual decomposition for
speech enhancement,” in Proc. IEEE ICASSP, 2018.

M. Fontaine, A. Liutkus, L. Girin, and R. Badeau, “Explaining the pa-
rameterized Wiener filter with alpha-stable processes,” in Proc. WASPAA,
2017.

A. Liutkus, D. Fitzgerald, and R. Badeau, “Cauchy nonnegative matrix
factorization,” in Proc. WASPAA, 2015, pp. 1-5.

K. Kitamura, Y. Bando, K. Itoyama, and K. Yoshii, “Student’s t multi-
channel nonnegative matrix factorization for blind source separation,” in
Proc. IWAENC, 2016, pp. 1-5.

D. Kitamura, S. Mogami, Y. Mitsui, N. Takamune, H. Saruwatari, N. Ono,
Y. Takahashi, and K. Kondo, “Generalized independent low-rank matrix
analysis using heavy-tailed distributions for blind source separation,”
EURASIP J. on Adv. in Signal Process., vol. 2018, no. 1, pp. 1-25, 2018.
M. Lombardi and D. Veredas, “Indirect estimation of elliptical stable
distributions,” Computational Statistics & Data Analysis, vol. 53, no. 6,
pp- 2309-2324, 2009.

S. J. Press, “Multivariate stable distributions,” Journal of Multivariate
Analysis, vol. 2, no. 4, pp. 444-462, 1972.

C. Févotte and J. Idier, “Algorithms for nonnegative matrix factorization
with the S-divergence,” Neural Computation, vol. 23, no. 9, pp. 2421—
2456, 2011.

N. Q. K. Duong, E. Vincent, and R. Gribonval, “Under-determined
reverberant audio source separation using a full-rank spatial covariance
model,” IEEE Trans. ASLP, vol. 18, no. 7, pp. 1830-1840, 2010.

D. Fitzgerald, A. Liutkus, and R. Badeau, “Projection-based demixing of
spatial audio,” IEEE/ACM Trans. ASLP, vol. 24, no. 9, pp. 1556-1568,
2016.

S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.
Math. Statist., vol. 22, no. 1, pp. 79-86, 1951.

A. Liutkus and R. Badeau, “Generalized Wiener filtering with fractional
power spectrograms,” in Proc. IEEE ICASSP, 2015, pp. 266-270.

A. Ozerov and C. Févotte, “Multichannel nonnegative matrix factorization
in convolutive mixtures for audio source separation,” IEEE Trans. ASLP,
vol. 18, no. 3, pp. 550-563, 2009.

E. Vincent, H. Sawada, P. Bofill, S. Makino, and J. P. Rosca, “First
stereo audio source separation evaluation campaign: Data, algorithms
and results,” in Proc. ICA, 2007, pp. 552-559.

ITU-T, “P.862 : Perceptual evaluation of speech quality (PESQ): An
objective method for end-to-end speech quality assessment of narrow-
band telephone networks and speech codecs,” 2001.

C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An algorithm
for intelligibility prediction of time-frequency weighted noisy speech,”
IEEE Trans. ASLP, vol. 19, no. 7, pp. 2125-2136, 2011.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, 2015.

R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proc. ICML, 2013, pp. 1310-1318.

T. Salimans and D. P. Kingma, “Weight normalization: A simple repa-
rameterization to accelerate training of deep neural networks,” in Proc.
NIPS, 2016, pp. 901-909.

C. K. Sgnderby, T. Raiko, L. Maalge, S. K. Sgnderby, and O. Winther,
“Ladder variational autoencoders,” in Proc. NIPS, 2016, pp. 3738-3746.



