Model-based image interpretation under uncertainty and fuzziness - Archive ouverte HAL Access content directly
Conference Papers Year : 2013

Model-based image interpretation under uncertainty and fuzziness


Structural models such as ontologies and graphs can encode generic knowledge about a scene observed in an image. Their use in spatial reasoning schemes allows driving segmentation and recognition of objects and structures in images. The developed methods include finding a best segmentation path in a graph, global solving of a constraint satisfaction problem, integrating prior knowledge in deformable models, and exploring images in a progressive fashion. Conversely, these models can be specified based on individual information resulting from the segmentation and recognition process. In particular models relying on spatial relations between structures are relevant and more flexible than shape models to be adapted to potential variations, multiple occurrences, or pathological cases. The problem of semantic gap is addressed by generating spatial representations (in the image space) of relations initially expressed in linguistic or symbolic form, within a fuzzy sets formalism. This allows coping with uncertainty and fuzziness, which are inherent both to generic knowledge and to image information. Applications in medical imaging and remote sensing imaging illustrate the proposed paradigm.
Not file

Dates and versions

hal-02288379 , version 1 (14-09-2019)


  • HAL Id : hal-02288379 , version 1


Isabelle Bloch. Model-based image interpretation under uncertainty and fuzziness. Tenth International Workshop on Fuzzy Logic and Applications - WILF (invited conference), Nov 2013, Genoa, Italy. pp.171-183. ⟨hal-02288379⟩
19 View
0 Download


Gmail Facebook Twitter LinkedIn More