Optimal Trajectories of a UAV Base Station Using Lagrangian Mechanics - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2019

Optimal Trajectories of a UAV Base Station Using Lagrangian Mechanics

(1, 2) , , (3) , (4)
1
2
3
4

Résumé

This paper considers the problem of optimizing the trajectory of an Unmanned Aerial Vehicle (UAV) Base Station (BS). A map is considered, characterized by a traffic intensity of users to be served. The UAV BS must travel from a given initial location at an initial time to a final position within a given duration and serves the traffic on its way. The problem consists in finding the optimal trajectory that minimizes a certain cost depending on the velocity and on the amount of served traffic. The problem is formulated using the framework of Lagrangian mechanics. When the traffic intensity is quadratic (single-phase), we derive closed-form formulas for the optimal trajectory. When the traffic intensity is bi-phase, necessary conditions of optimality are provided and an Alternating Optimization Algorithm is proposed, that returns a trajectory satisfying these conditions. The Algorithm is initialized with a Model Predictive Control (MPC) online algorithm. Numerical results show how the trajectory is improved with respect to the MPC solution.
Fichier non déposé

Dates et versions

hal-02288564 , version 1 (14-09-2019)

Identifiants

  • HAL Id : hal-02288564 , version 1

Citer

Marceau Coupechoux, Jérôme Darbon, Jean-Marc Kélif, Marc Sigelle. Optimal Trajectories of a UAV Base Station Using Lagrangian Mechanics. IEEE International Conference on Computer Communications (INFOCOM), Workshop on Mission-Oriented Wireless Sensor, UAV and Robot Networking (MISARN), Apr 2019, Paris, France. pp.1-6. ⟨hal-02288564⟩
32 Consultations
0 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More