
HAL Id: hal-02288594
https://telecom-paris.hal.science/hal-02288594

Preprint submitted on 15 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fundamental Storage-Communication Tradeoff in
Distributed Computing with Straggling Nodes

Qifa Yan, Michèle Wigger, Sheng Yang, Xiaohu Tang

To cite this version:
Qifa Yan, Michèle Wigger, Sheng Yang, Xiaohu Tang. A Fundamental Storage-Communication Trade-
off in Distributed Computing with Straggling Nodes. 2019. �hal-02288594�

https://telecom-paris.hal.science/hal-02288594
https://hal.archives-ouvertes.fr

A Fundamental Storage-Communication Tradeoff in
Distributed Computing with Straggling Nodes
Qifa Yan, Michèle Wigger

LTCI, Télécom ParisTech
75013 Paris, France

Email: {qifa.yan, michele.wigger}
@telecom-paristech.fr

Sheng Yang
L2S, CentraleSupélec

91190 Gif-sur-Yvette, France
Email: sheng.yang@centralesupelec.fr

Xiaohu Tang
Information Security and National

Computing Grid Laboratory,
Southwest Jiaotong University,

611756, Chengdu, Sichuan, China
Email: xhutang@swjtu.edu.cn

Abstract—The optimal storage-computation tradeoff is charac-
terized for a MapReduce-like distributed computing system with
straggling nodes, where only a part of the nodes can be utilized
to compute the desired output functions. The result holds for
arbitrary output functions and thus generalizes previous results
that restricted to linear functions. Specifically, in this work,
we propose a new information-theoretical converse and a new
matching coded computing scheme, that we call coded computing
for straggling systems (CCS).

I. INTRODUCTION

Distributed computing has emerged as one of the most
important paradigms to speed up large-scale data analysis
tasks such as machine learning. A well-known computing
framework, MapReduce, can deal with tasks with large data
size. In such systems, the tasks are typically decomposed into
computing map and reduce functions, where the map functions
can be computed by different nodes across the network, and
the final outputs are computed by combining the outputs
of the map functions by means of reduce functions. Such
architectures can be used, for example, to perform learning
tasks in neural networks [1].

Recently, Li et al. proposed a scheme named coded dis-
tributed computing (CDC), which through clever coding re-
duces the communication load for data shuffling between
the map and reduce phases [2]. The CDC scheme achieves
the optimal storage-communication tradeoff, i.e., the smallest
communication load under a total memory constraint. More
recently, this result was extended in [3], [4] to account also
for the computation load during the map phase.

In this paper, we consider a variant of this problem where
each node takes a random time to compute its desired map
functions. In this case, waiting that all nodes have finished
their computation can be too time consuming. Instead, the
data shuffling and reduce computations are started as soon as
any set of Q nodes, for Q a constant in {1, . . . ,K}, and K the
number of total nodes, has terminated the map computations.
One of the difficulties in such systems is that when assigning
the map computations to the nodes, it is yet unclear which
set of Q nodes will perform the data shuffling and compute
the reduce functions. In this sense, the assignment of map
computations needs to be convenient irrespective of the set of
Q nodes that computes the reduce functions.

This setup with straggling nodes, hereafter referred to as the
straggling system, has been introduced in [5]. That work used
maximum separable codes (MDS) to set up coded computing.
Similar codes were also used in [6], [7], and it was shown that
they achieve the order optimal storage-communcation tradeoff
in such straggling systems when the global task is to compute
linear functions.

Many important tasks in practice, such as computations
in neural networks, are however non-linear. This motivates
us to investigate the MapReduce framework with straggling
nodes for general map and reduce functions. In this work,
we completely characterize the optimal storage-communcation
tradeoff for systems with straggling nodes. This optimal
tradeoff is achieved by our new scheme that we name coded
computing for straggling systems (CCS). We also present
an information-theoretical converse matching our new CCS
scheme.

Related to the present work are also distributed computing
schemes with straggling nodes for master-worker network
models, where the worker nodes perform the map computa-
tions and the master node the reduce computations. Specifical-
ly, [8]–[10] proposed coding schemes for systems with linear
map and reduce functions and [11] proposed coding schemes
for calculating the derivative of likelihood functions.

Notations: For positive integers n, k where k ≤ n, we will
use the notations Ckn , n!

k!(n−k)! , [n] , {1, 2, . . . , n}, and
[k : n] , {k, k+1, . . . , n}. We use sans-serif font, e.g., K, to
denote system parameters. The binary field is denoted by F2

and the n dimensional vector space over F2 is denoted by Fn2 .
The operator | · | is used in the following way: for a set A, we
use |A| to denote its cardinality, while for a signal X , we use
|X| to denote its length measured in bits. The notation Pr{·}
is used to denote probability of an event.

II. SYSTEM MODEL

In this section, we define our model, referred to as the
(K,Q) straggling system. This model is parameterized by
positive integers K,Q,N,D,U,V,W. Consider a system that
aims to compute D output functions through K distributed
computing nodes, denoted by K , [K]. Each output function
φd (d ∈ [D]) takes all files in the library W = {wn : n ∈ [N]}

as inputs, where wn is a file of size W bits, and outputs a bit
stream of length U, i.e.,

ud = φd(w1, . . . , wN) ∈ FU
2 ,

where φd : FNW
2 → FU

2 . Assume that the computation of each
output function φd can be decomposed as:

φd(w1, . . . , wN) = hd(fd,1(w1), . . . , fd,N(wN)),

where
• The map function fd,n : FW

2 → FV
2 maps the file wn into

a binary stream of length V, called intermediate values
(IVA), i.e.,

vd,n , fd,n(wn) ∈ FV
2 , ∀ n ∈ [N].

• The reduce function hd : FNV
2 → FU

2 maps the IVAs
{vd,n}Nn=1 into the output stream

ud = hd(vd,1, . . . , vd,N).

Hence, the computation is carried out through three phases.
1) Map Phase: Each node k ∈ K stores a subset of files

Mk ⊆ W , and tries to compute all the IVAs from the files in
Mk, denoted by Ck:

Ck , {vd,n : d ∈ [D], wn ∈Mk}. (1)

Each node has a random time to compute its corresponding
IVAs. To limit latency of the system, the distributed comput-
ing scheme proceeds with the shuffle and reduce phases as
soon as a fixed number of Q nodes has terminated the map
computations. This subset of nodes will be called active set.

Notice that Q is a fixed system parameter. Moreover, for
simplicity we assume that each subset Q ⊆ K of size |Q| = Q
is active with same probability. Define

Tt , {T ⊆ K : |T | = t}, ∀ t ∈ [K],

and let Q denote the active set. Then,

Pr {Q = Q} = 1

CQ
K

, ∀ Q ∈ TQ.

We also assume that all the files can be recovered1 from any
active set of size Q. Hence, for any file wn ∈ W , the number of
nodes storing this file must satisfy tn ≥ K−Q+1, ∀ n ∈ [N],
and hence r ≥ K− Q+ 1.

The output functions φ1, . . . , φD are then uniformly as-
signed to the nodes in Q. Denote the indices of the output
functions assigned to a given node k ∈ Q by DQ,k.2 Thus,
DQ , {DQ,k}k∈Q forms a partition of [D], and each DQ,k

is of cardinality D
Q . Denote the set of all uniform partitions of

[D] by B.
2) Shuffle Phase: The nodes in Q proceed to exchange

their computed IVAs. Each node k multicasts a signal

XQ
k = ϕ

(k)
Q (Ck,DQ)

1In this paper, we exclude the “outage” event in which some active set
cannot compute the given function due to missing files.

2Here we assume for simplicity that Q divides D. Note that otherwise we
can always add empty functions for the assumption to hold.

to all other nodes in Q, where ϕ(k)
Q : F|Ck|V2 ×B→ F|X

Q
k |

2 is
the encoding function of node k. Thus each active node k ∈ Q
receives the signals XQ ,

{
XQ
k : k ∈ Q

}
error-free.

3) Reduce Phase: With the received signals XQ exchanged
during the shuffle phase and the IVAs Ck computed locally
during the map phase, node k restores all the IVAs

{(vd,1, . . . , vd,N)}d∈DQ,k
= ψ

(k)
Q

(
XQ, Ck,DQ

)
,

where ψ(k)
Q : F

∑
k∈Q |X

Q
k |

2 ×F|Ck|V2 ×B→ F
NDV
Q

2 . Subsequently,
it proceeds to compute

ud = hd(vd,1, . . . , vd,N), ∀ d ∈ DQ,k. (2)

Remark 1: Notice that a decomposition into map and re-
duce functions is always possible. In fact, trivially, one can
set the map and reduce functions to be the identity and
output functions respectively, i.e., fd,n(wn) = wn, and hd =
φd, ∀ n ∈ [N], d ∈ [D], in which case V = W. However, to
mitigate the communication cost in shuffle phase, one would
prefer a decomposition such that the length of the IVAs is
small but suffices to compute the final outputs.

To measure the storage and computation costs, we introduce
the following definitions:

Definition 1 (Storage Space): Storage space r is defined as
the total number of files stored across the K nodes normalized
by the total number of files N, i.e.,

r ,

∑K
k=1 |Mk|

N
.

Definition 2 (Communication Load): Communication load
L is defined as the average total number of bits sent in the
shuffle phase, normalized by the total number of bits of all
intermediate values, i.e.,

L = E

[∑
k∈Q |X

Q
k |

NDV

]
,

where the expectation is taken with respect to the active set
Q.

Definition 3 (Optimal SC Tradeoff): A pair of real numbers
(r, L) is achievable if for any ε > 0, there exist positive
integers N,D,U,V,W, a storage design {Mk}Kk=1 of storage
space less than r + ε, a set of uniform assignments of output
functions {DQ}Q∈TQ

, and a collection of encoding functions{{
ϕ

(k)
Q
}
k∈Q

}
Q∈TQ

with communication load less than L+ ε,
such that all the output functions φ1, . . . , φD can be computed
successfully. For a fixed Q ∈ [K], we define the optimal
storage-communication (SC) tradeoff as

L∗K,Q(r) , inf {L : (r, L) is achievable} .

The goal of this paper is to characterize L∗K,Q(r) for r ∈
[K− Q+ 1,K] for each Q ∈ [K].

III. MAIN RESULT

We summarize our main result in the following theorem.
Theorem 1: For a (K,Q) straggling system, with a given

integer storage space r ∈ [K−Q+1 : K], the optimal storage-
communication tradeoff is

L∗K,Q(r) =
(
1− r

K

)
·

min{r,Q−1}∑
l=r+Q−K

1

l
·
Clr · CQ−l−1

K−r−1

CQ−1
K−1

.

In general, for r ∈ [K − Q + 1,K], L∗K,Q(r) is given by the
lower convex envelope formed by the above points.

Theorem 1 characterizes the storage-communication trade-
off for all positive integers Q ≤ K. Fig. 1 shows the
curves

{
L∗K,Q(r) : Q ∈ [K]

}
for K = 10. Notice that, when

Q = 1, the curve reduces to a single point (K, 0), while when
Q = K, the curve corresponds to the optimal tradeoff without
straggling node obtained in [2]. In fact, in the case Q = K,
our proposed scheme becomes the CDC scheme in [2].

Fig. 1. Optimal Storage-Communication Tradeoff L∗
K,Q(r) for Q ∈ [K]

when K = 10.

It is worth pointing out that the CCS scheme achieves the
tradeoff without any assumption on the structure of map and
reduce functions. Therefore, the files have to be stored in
an uncoded fashion. Our converse relies on this assumption.
If map and the reduce functions have certain properties, for
example, linearity, a better SC tradeoff can be obtained with
coded storage [6], [7]. A more detailed comparison of CCS
scheme with linear map and reduce functions can be found in
the long version of this paper [12].

We will see that, the storage design {Mk}Kk=1 does not
depend on the parameter Q but only on the available storage
space r (See (3)). The proposed storage design is thus uni-
versally optimal irrespective of the size of the active set. In
practice, the map phase can thus be carried out even without
knowing how many nodes will be participating in the reduce
phase. It turns out that, the CCS scheme can be generalized
to a more general class of coded computing schemes with this
property by means of a combination concept called placement
delivery array [13], see [12] for details.

IV. ACHIEVABILITY

In this section, we first present our proposed scheme, and
then analyze its performance to prove the achievability part of

Theorem 1.

A. Coded Computing for Straggling Systems (CCS)

Let r be an integer value in [K − Q + 1 : K]. Consider
N a multiple of CrK. Partition the files into CrK batches, each
containing ηr , N

Cr
K

files. Each batch is then associated with
a subset T of K of cardinality r. Let WT denote the batch of
ηr files associated with set T . Then,

W = {w1, . . . , wN} = ∪
T ∈Tr

WT .

We now describe the map, shuffle, and reduce procedures
of the CCS scheme.

1) Map Phase: Each node k stores batches WT such that
k ∈ T , i.e.,

Mk = ∪
T :T ∈Tr, k∈T

WT , (3)

and tries to compute all IVAs in (1).
2) Shuffle Phase: Assume the random active set Q be

Q. Pick any uniform assignment of output functions DQ =
{DQ,k}k∈Q. For any subset T ⊆ K of size r and any k ∈ K,
let

VT ,k , {vd,n : d ∈ Dk, wn ∈ WT } .

The shuffle phase is accomplished in min{K−Q+1,K−r}
rounds, where each round is indexed by an integer l ∈

[
r +

Q − K : min{r,Q − 1}
]
. Consider round l, where we define

all subsets of K of size r with exactly l active nodes:

TlQ,r , {T ⊆ K : |T | = r, |T ∩ Q| = l}.

For any j ∈ Q and any T ∈ TlQ,r with j /∈ T , evenly split the
IVAs VT ,j into l disjoint packets that we label as {V iT ,j : i ∈
T ∩ Q}. So,

VT ,j = {V iT ,j : i ∈ T ∩ Q}. (4)

Each node k ∈ Q then multicasts the bit-wise XOR

Xk
T ,

⊕
j∈T ∩Q

V k(T \{j})∪{k},j , ∀ T ∈ TlQ,r s.t. k /∈ T . (5)

Node k can compute all these signals because it can compute
all IVAs

{
VT ′,j : T ′ ∈ TlQ,r and k ∈ T ′

}
, see (3).

3) Reduce Phase: Any given node k ∈ Q can recover all
IVAs

{VT ,k : T ∈ Tr, k ∈ T }

locally, see again (3). To obtain the missing IVAs

{VT ,k : T ∈ Tr, k /∈ T }, (6)

it again proceeds in rounds l = r+Q−K, . . . ,min{r,Q−1}. In
round l, it forms for each T ∈ TlQ,r s.t. k /∈ T and j ∈ T ∩Q
the IVA packet

V jT ,k =
⊕

i∈(T \{j})∩Q

V j(T \{i})∪{k},i ⊕X
j
(T \{j})∪{k}. (7)

Notice that,

1) Node k can form the signal (7) since it obtained the
signal Xj

(T \{j})∪{k} from node j, and it can compute
the IVAs

{
V j(T \{i})∪{k},i : i ∈ (T \{j}) ∩Q

}
locally.

2) Node k can decode all the IVAs in (6), since for any
T ∈ Tr such that k /∈ T , r + Q − K ≤ |T ∩ Q| ≤
min{r,Q−1}, and thus, T must be an element of TlQ,r,
for some l ∈ [r + Q− K : min{r,Q− 1}].

Finally, it computes the output functions through (2).

B. Performance Analysis

By (3), each node k stores Cr−1
K−1 batches, each of which

containing ηr files. Thus, the storage space is

r =

∑K
k=1 |Mk|

N
=

K ·
(
K−1
r−1

)
· ηr

N
= r.

For each l ∈
[
r + Q− K : min{r,Q− 1}

]
, by (4) and (5),

there are in total (Q− l) ·ClQ ·C
r−l
K−Q signals sent in the round

l, each of size ηr
l ·

D
Q ·V bits. Notice that, the communication

load does not depend on the realization of the active set Q but
only on its size Q. Hence, the average communication load is

L =

min{r,Q−1}∑
l=r+Q−K

(Q− l) · ClQ · C
r−l
K−Q

NDV
· ηr
l
· D
Q
· V

=
(
1− r

K

)
·

min{r,Q−1}∑
l=r+Q−K

1

l
·
Clr · CQ−l−1

K−r−1

CQ−1
K−1

.

We have proved the achievability when r ∈ [K−Q+1 : K].
For general r ∈ [K−Q+1,K], the lower convex envelope can
be achieved with memory- and time- sharing.

V. CONVERSE

Let {Mk}Kk=1 be a storage design and (r, L) be a storage-
communication pair achieved based on {Mk}Kk=1. For each
s ∈ [K− Q+ 1 : K], define

aM,s ,
∑

I⊆K:|I|=s

∣∣∣∣(∩k∈IMk

)∖(
∪

k̄∈K\I
Mk̄

)∣∣∣∣ ,
i.e., aM,s is the number of files stored s times across all the
nodes. Then by definition, aM,s satisfies

aM,s ≥ 0, (8)
K∑

s=K−Q+1

aM,s = N, (9)

K∑
s=K−Q+1

saM,s = rN. (10)

For any Q ∈ TQ and any l ∈ [Q], define

bQM,l ,
∑

I⊆Q:|I|=l

∣∣∣∣(∩k∈IMk

)∖(
∪

k̄∈Q\I
Mk̄

)∣∣∣∣ ,
i.e., bQM,l is the number of files stored exactly l times in the
nodes of Q. Since any file that is stored s times across the all

nodes, has l occurrences in exactly Cls · CQ−l
K−s subsets of TQ,

we have∑
Q∈TQ

bQM,l =

K−Q+l∑
s=max{l,K−Q+1}

aM,s · Cls · CQ−l
K−s. (11)

Consider the case that the active set is Q, all the output
functions are computed through the nodes in Q. For the
sub-system with computing nodes in Q, under the storage
{Mk}k∈Q, the optimal communication load L∗M,Q has the
following lower bound by [2, Lemma 1]:

L∗M,Q ≥
Q∑
l=1

bQM,l

N
· Q− l

Ql
.

Then the communication load

L = E

[∑
k∈Q |X

Q
k |

NDV

]

=
∑
Q∈TQ

E

[∑
k∈Q |X

Q
k |

NDV

∣∣∣∣∣ Q = Q

]
· Pr{Q = Q}

≥
∑
Q∈TQ

L∗M,Q · Pr{Q = Q}

≥ 1

CQ
K

·
∑
Q∈TQ

Q∑
l=1

bQM,l

N
· Q− l

Ql

=
1

CQ
K

·
Q∑
l=1

 ∑
Q∈TQ

bQM,l

N

 · Q− l
Ql

(a)
=

Q∑
l=1

 K−Q+l∑
s=max{l,K−Q+1}

aM,s

N
·
ClsC

Q−l
K−s

CQ
K

 · Q− l
Ql

=

K∑
s=K−Q+1

aM,s

N
·

min{s,Q}∑
l=s+Q−K

Q− l
Ql

·
ClsC

Q−l
K−s

CQ
K

, (12)

where (a) follows from (11).
Let ZQ

K (x) be the function defined on the interval [K−Q+
1,K] by connecting the points

(
s, ZQ

K (s)
)

sequentially, where

ZQ
K (s) ,

min{s,Q}∑
l=s+Q−K

Q− l
Ql

· Cls · CQ−l
K−s (13)

is defined for any s ∈ [K − Q + 1 : K]. In the Appendix, we
will prove the following claim.

Claim 1: The function ZQ
K (x) is a convex decreasing func-

tion over [K− Q+ 1,K].
By (8) and (9), aM,s

N are coefficients between 0 and 1 whose
summation is 1. Hence by (12) and Claim 1, we have

L ≥ 1

CQ
K

·
K∑

s=K−Q+1

aM,s

N
· ZQ

K (s)

≥ 1

CQ
K

· ZQ
K

(
K∑

s=K−Q+1

saM,s

N

)
(a)
=

ZQ
K (r)

CQ
K

,

where (a) follows from (10). Combining the facts L + ε ≥
L, r + ε ≥ r for any ε > 0 and ZQ

K (x) is continuous over the
interval [K− Q+ 1,K], we obtain

L ≥
ZQ
K (r)

CQ
K

, ∀ r ∈ [K− Q+ 1,K].

In particular, when r ∈ [K− Q+ 1 : K], we have

L ≥
(
1− r

K

)
·

min{r,Q−1}∑
l=r+Q−K

1

l
·
Clr · CQ−l−1

K−r−1

CQ−1
K−1

.

ACKNOWLEDGMENT

The work of Q. Yan and M. Wigger has been supported by
the ERC under grant agreement 715111.

APPENDIX
PROOF OF CLAIM 1

We prove Claim 1 by verifying that, the sequence{
ZQ
K (s)

}K
s=K−Q+1

is a discrete monotonically decreasing con-
vex sequence, i.e,

ZQ
K (s+ 1)− ZQ

K (s) < 0, (14)

ZQ
K (s+ 1)− ZQ

K (s) > ZQ
K (s)− Z

Q
K (s− 1). (15)

Notice that by (13),

ZQ
K (s) =

min{s,Q}∑
l=s+Q−K

Cls · CQ−l
K−s

l
−

min{s,Q}∑
l=s+Q−K

Cls · CQ−l
K−s

Q

(a)
=

min{s,Q}∑
l=s+Q−K

Cls · CQ−l
K−s

l
−
CQ

K

Q
,

where in (a), we used the equality
∑min{s,Q}
l=s+Q−K C

l
s · CQ−l

K−s =

CQ
K . Thus the constant CQ

K

Q shows up in both ZQ
K (s + 1) and

ZQ
K (s) for all s ∈ [K− Q+ 1 : K− 1], then

ZQ
K (s+ 1)− ZQ

K (s)

=

min{s+1,Q}∑
l=s+1+Q−K

Cls+1C
Q−l
K−s−1

l
−

min{s,Q}∑
l=s+Q−K

ClsC
Q−l
K−s
l

(a)
=

min{s+1,Q}∑
l=s+1+Q−K

(
Cls + Cl−1

s

)
· CQ−l

K−s−1

l

−
min{s,Q}∑
l=s+Q−K

Cls ·
(
CQ−l

K−s−1 + CQ−l−1
K−s−1

)
l

=

min{s+1,Q}∑
l=s+1+Q−K

Cl−1
s CQ−l

K−s−1

l
−

min{s,Q−1}∑
l=s+Q−K

ClsC
Q−l−1
K−s−1

l

(b)
=

min{s,Q−1}∑
l=s+Q−K

ClsC
Q−l−1
K−s−1

l + 1
−

min{s,Q−1}∑
l=s+Q−K

ClsC
Q−l−1
K−s−1

l

= −
min{s,Q−1}∑
l=s+Q−K

ClsC
Q−l−1
K−s−1

l(l + 1)
(16)

< 0,

where in (a), we applied the equality Cm+1
n+1 = Cm+1

n + Cmn
and in (b), we used the variable change l′ = l− 1 in the first
summation.

Moreover, following similar steps as above, by (16), for
s ∈ [K− Q+ 2 : K− 1], we can prove(

ZQ
K (s+ 1)− ZQ

K (s)
)
−
(
ZQ
K (s)− Z

Q
K (s− 1)

)
=

min{s,Q}−1∑
l=Q+s−1−K

Cls−1C
Q−l−1
K−s

l(l + 1)
−

min{s,Q−1}∑
l=Q+s−K

ClsC
Q−l−1
K−s−1

l(l + 1)

=

min{s,Q−1}∑
l=s+Q−K

2Cl−1
s−1C

Q−l−1
K−s−1

(l − 1)l(l + 1)

> 0.

We have proved (14) and (15). As a result, the piecewise lin-
ear function ZQ

K (x) connecting points
{(
s, ZQ

K (s)
)}K
s=K−Q+1

sequentially is a convex function.

REFERENCES

[1] Y. Liu, J. Yang, Y. Huang, L. Xu, S. Li, and M. Qi, “MapReduce
based parallel neural networks in enabling large scale machine learning,"
Comput. Intell. Neurosci., 2015.

[2] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed comput-
ing," IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan. 2018.

[3] Q. Yan, S. Yang, and M. Wigger, “Storage, computation, and communica-
tion: A fundamental tradeoff in distributed computing," arXiv:1806.07565

[4] Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs
distributed computation: An alternative trade-off curve," in Proc. IEEE
Inf. Theory Workshop (ITW), Kaohsiung, Taiwan, pp. 279–283, Nov.
2017.

[5] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes," IEEE Trans. Inf.
Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[6] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers," in Proc.
IEEE Globecom Works (GC Wkshps), Washington, DC, USA, Dec. 2016.

[7] J. Zhang and O. Simeone, “Improved latency-communication trade-off
for map-shuffle-reduce systems with stragglers," arXiv:1808.06583

[8] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: An
optimal design for high-dimensional coded matrix multiplication," in
Proc. The 31st Annual Conf. Neural Inf. Processing System (NIPS), Long
Beach, CA, USA, May 2017.

[9] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Straggler mitigation in dis-
tributed matrix multiplication: Fundamental limits and optimal coding,"
in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, pp. 2022–2026,
Jun. 2018.

[10] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing
massive-scale distributed matrix multiplication with d-dimensional prod-
uct codes," in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, pp.
1993–1997, Jun. 2018.

[11] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding
from cyclic MDS codes and expander graphs," arXiv: 1707.03858.

[12] Q. Yan, M. Wigger, S. Yang, and X. Tang, “A fundamental storage-
communication tradeoff in distributed computing with stragging nodes,"
arXiv:1901.07793.

[13] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design for centralized coded caching scheme," IEEE Trans. Inf.
Theory, vol. 63, no. 9, pp. 5821–5833, Sep. 2017.

