A. Richard, P. Davis, T. Zang, and . Zheng, Sparse vector autoregressive modeling, Journal of Computational and Graphical Statistics, vol.25, issue.4, pp.1077-1096, 2016.

M. Eichler and V. Didelez, Causal reasoning in graphical time series models, 2012.

P. Esling and C. Agon, Time-series data mining, ACM Computing Surveys (CSUR), vol.45, issue.1, p.12, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01577883

S. Haufe, K. Müller, G. Nolte, and N. Krämer, Sparse causal discovery in multivariate time series, Causality: Objectives and Assessment, pp.97-106, 2010.

E. Jang, S. Gu, and B. Poole, Categorical reparameterization with gumbel-softmax, 2016.

?. Kaiser and S. Bengio, Discrete autoencoders for sequence models, 2018.

P. Diederik, M. Kingma, and . Welling, Auto-encoding variational bayes, 2013.

T. Kipf, E. Fetaya, K. Wang, M. Welling, and R. Zemel, Neural relational inference for interacting systems, 2018.

H. Larochelle and I. Murray, The neural autoregressive distribution estimator, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp.29-37, 2011.

Z. Li, D. He, F. Tian, W. Chen, T. Qin et al., Towards binary-valued gates for robust lstm training, 2018.

F. Locatello, S. Bauer, M. Lucic, S. Gelly, B. Schölkopf et al., Challenging common assumptions in the unsupervised learning of disentangled representations, 2018.

C. Louizos, M. Welling, and D. Kingma, Learning sparse neural networks through l_0 regularization, 2017.

X. Ma, C. Zhou, E. Hovy, and . Mae, Mutual posterior-divergence regularization for variational autoencoders, 2019.

A. Chris-j-maddison, Y. Mnih, and . Teh, The concrete distribution: A continuous relaxation of discrete random variables, 2016.

S. Merity, N. Shirish-keskar, and R. Socher, Regularizing and optimizing lstm language models, 2017.

H. Sak, A. Senior, and F. Beaufays, Long short-term memory recurrent neural network architectures for large scale acoustic modeling, Fifteenth annual conference of the international speech communication association, 2014.

A. Santoro, D. Raposo, G. David, M. Barrett, R. Malinowski et al., A simple neural network module for relational reasoning, Advances in neural information processing systems, pp.4967-4976, 2017.

S. Seabold and J. Perktold, Statsmodels: Econometric and statistical modeling with python, Proceedings of the 9th Python in Science Conference, vol.57, p.61, 2010.

X. Shen, H. Su, S. Niu, and V. Demberg, Improving variational encoder-decoders in dialogue generation, Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Y. Hiro, . Toda, C. B. Peter, and . Phillips, Vector autoregression and causality: a theoretical overview and simulation study, Econometric reviews, vol.13, issue.2, pp.259-285, 1994.

M. Tschannen, O. Bachem, and M. Lucic, Recent advances in autoencoder-based representation learning, 2018.

S. Yi and V. Pavlovic, Sparse granger causality graphs for human action classification, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp.3374-3377, 2012.

W. Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization, 2014.