
HAL Id: hal-02300060
https://telecom-paris.hal.science/hal-02300060

Submitted on 12 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal side-channel attacks for multivariate leakages
and multiple models

Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Marion Damien, Olivier
Rioul

To cite this version:
Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Marion Damien, Olivier Rioul. Optimal side-
channel attacks for multivariate leakages and multiple models. PROOFS 2016 Security Proofs for
Embedded Systems, Aug 2016, Santa Barbara, United States. �10.1007/s13389-017-0170-9�. �hal-
02300060�

https://telecom-paris.hal.science/hal-02300060
https://hal.archives-ouvertes.fr


Optimal Side-Channel Attacks
for Multivariate Leakages and Multiple Models

Nicolas Bruneau1,2, Sylvain Guilley1,3, Annelie Heuser1?,
Damien Marion1,3, and Olivier Rioul1,4
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Abstract. Side-channel attacks allow to extract secret keys from em-
bedded systems like smartcards or smartphones. In practice, the side-
channel signal is measured as a trace consisting of several samples. Also,
several sensitive bits are manipulated in parallel, each leaking differently.
Therefore, the informed attacker needs to devise side-channel distinguish-
ers that can handle both multivariate leakages and multiple models. In
the state-of-the-art, these two issues have two independent solutions: on
the one hand, dimensionality reduction can cope with multivariate leak-
age; on the other hand, online stochastic approach can cope with multiple
models.

In this paper, we combine both solutions to derive closed-form expres-
sions of the resulting optimal distinguisher in terms of matrix opera-
tions, in all situations where the model can be either profiled offline or
regressed online. Optimality here means that the success rate is maxi-
mized for a given number of traces. We recover known results for uni- and
bi-variate models (including correlation power analysis), and investigate
novel distinguishers for multiple models with more than two parameters.
In addition, following ideas from the AsiaCrypt’2013 paper “Behind the
Scene of Side-Channel Attacks”, we provide fast computation algorithms
in which the traces are accumulated prior to computing the distinguisher
values.

1 Introduction

Side-channel attacks allow to extract secret keys from cryptographic devices.
Template attacks [3] have been introduced as the strongest analysis method.
They consist in two phases: (i) a profiling offline phase were the leakage model of
the device under attack is characterized; (ii) an attack online phase in which the
secret key is extracted using fresh measurements along with the pre-characterized

? Annelie Heuser is a Google European fellow in the field of privacy and is partially
founded by this fellowship.
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model. Such attacks are known to use a maximum likelihood principle to ensure
the highest possible success probability (see, eg., [8]).

In this paper we study optimal attacks with the best possible success proba-
bility when extracting the secret key1. We leverage on such optimal distinguish-
ers to answer the following question: how to attack with the best probability of
success when the leakage is multivariate and the model are multiple? An initial
empirical work has already been carried out in [13] and confirmed that this type
of approach can be very fruitful2.

Contributions. We derive closed-form expressions for the optimal distinguish-
ers in all situations where the model is known (e.g., using profiling) or regressed
online. In the case of a known univariate model, we recover the results in [2], How-
ever, our “fully matrix” formalism makes equations simpler and proofs shorter.
Moreover, compared to [2] we extend the leakage model to the case where the
traces are not necessarily centered, thereby allowing a more natural application
on real traces. In the realistic “stochastic attack” situation where the model
is parametric, i.e. where the coefficients of the model are unknown, we express
the optimal distinguisher by maximizing success over the whole set of possi-
ble coefficients. Finally, we provide fast computation algorithms for our novel
distinguishers, which happen to be remarkably simple and efficient.

Outline. The remainder of this paper is organized as follows. Sec. 2 provides
a modelization of a side-channel attack that is generic enough to capture many
different multivariate scenarios. The main results of this paper are outlined in
Sec. 3. Sec. 4 presents experimental results on simulated traces and real-world
acquisition campaigns. Conclusions and perspectives are in Sec. 5.

2 Notations and Leakage Model

2.1 Notations

We let X denote the leakage measurements, Y the model, N the measurement
noise, and α the link between the model and the measurements3. The model Y

1 The success probability in key recovery is chosen as a figure of merit for optimization.
Such an objective is typical of “pure” side-channel attacks. Other approaches [7,10,
15] relax the condition that the key found by the side-channel analysis be ranked first
and complements it with a key enumeration stage. This yields a data vs. complexity
tradeoff that is not explored in this paper.

2 Multi-target attacks [10, 16] have a somewhat different goal, namely the best aggre-
gation of information about several subparts of a key, possibly leaking at different
times with different models, in order to recover the full key efficiently. Here we con-
sider only one multivariate leakage model and focus on recovering one subpart of
the key. However, our derivation is capable of handling multivariate leakages and
models and may still be combined with the multi-target approaches.

3 Notations X,Y are consistent with the usual convention in machine learning, where
X is for the collected data and Y for the classification labels.



Optimal Attacks for Multivariate Leakages and Multiple Models 3

depends on a key guess k, an n-bit vector, and on some known text T (usually also
an n-bit vector) e.g., through a function φ such that Y = φ(T, k). A well-known
example is Y = wH(T⊕k), where wH is the Hamming weight function. However,
in general, some parameters of the model are unknown. To remain generic, we
do not detail further the link between Y and (T, k). As it is customary in side-
channel analysis, the correct key is denoted by k?. The corresponding model
using the correct key Y (k?) is denoted by Y ?.

Let Q be the number of queries (number of measurements), D be the data
dimensionality (number of time samples per measurement trace) and S be the
model dimensionality (φ : Fn2 × Fn2 → RS is a vectorial function, with S compo-
nents). Roman letters in bold indicate vectors or matrices that have a dimension
in Q, i.e., which are different for each trace q = 1, 2, . . . , Q. More precisely, X
represents the full attack campaign, a matrix of D × Q measurement samples.
The q-th trace is denoted Xq which is a D × 1 column vector. Similarly, for the
q-th trace, the S × 1 column vector Yq represents the deterministic part of the
model while the D×1 column vector Nq is the corresponding measurement noise
with D ×D correlation matrix Σ.

We denote by tr (·) the trace of a square matrix, that is the sum of its
diagonal terms. Note that tr (AB) = tr (BA) for compatible matrix dimensions.
Let ‖·‖2 denote the Euclidean norm of a 1×Q row vector. Thus ‖X‖22 = XXT =

tr
(
XTX

)
, where ( · )T is the transposition operator. Finally let ‖ · ‖F denote the

Frobenius norm of a matrix (square root of the sum of its squared elements),
such that ‖M‖2F = tr

(
MMT

)
.

2.2 General Model

We make the following simplifying assumptions. First, the (environmental) noise
is steady, e.g., chip temperature and supply voltage do not vary during the side-
channel measurements. Thus N1, N2, . . . , NQ are independent and identically
distributed (i.i.d.) (denoted by N with index q dropped). Second, the attacker
does not inject partial information gathered from the leakage analysis into a pos-
sible choice of plaintexts/ciphertexts (nonadaptive attack)4. Thus Y1, Y2, . . . , YQ
are assumed i.i.d. (denoted by Y ). Under the adopted leakage model it follows
that the leakage measurements X1, X2, . . . , XQ are also i.i.d. (denoted by X).

A distinguisher D maps a collection of leakages x and texts t to an estimation
of the secret key k?. Let us recall that x and t are realizations of random variables
X and T: x is a D ×Q matrix of real numbers (the acquisition campaign) and
t is a 1 × Q vector of n-bit words (bytes when n = 8) which are the publicly
known plaintext or ciphertext bytes. An optimal distinguisher maximizes the
probability of success D(x, t) = k?.

The simplest situation occurs when X consists in a modulation of Y plus
noise, in which case we let α be the signal envelope. In real traces, however, we
face the more general situation where the model can be offset by some quantity

4 In fact, our results tolerate chosen texts, but consider them as observed inputs to
the attack. We do not optimize the attack according to chosen inputs.
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the general case being an S-dimensional parametric model with S ≥ 2 compo-
nents. For this reason, we consider α as a D × S matrix and we set in matrix
notation

X = αY? + N (1)

where X is D ×Q, α is D × S, Y? is S ×Q, and N is D ×Q. Notice that our
convention to consider traces as lines and dimensions as rows allows us to write
the deterministic part of the leakage as αY? which writes more naturally than
the opposite order where traces would be viewed as a vertical time series.

For each trace q = 1, 2, . . . , Q, we assume that the vector N = Nq follows
that same multivariate normal distribution N (0, Σ), where the D × D corre-
lation matrix Σ = E(NNT) is assumed known to the attacker5. Since Σ is
assumed symmetric positive definite, there exists a matrix Σ1/2, which is such
that Σ1/2Σ1/2 = Σ. We refer to Σ1/2 as the standard deviation noise matrix.

The model (1) used throughout the paper is quite generic and have multiple
facets depending on the choice of S and the respective values given to α and Y .
This is discussed next.

2.3 Examples with S = 2 and S = 9

For S = 1, the traces consist only in a modulation of the model plus noise as
in [2]. When considering traces that are not only modulated but also have an
offset term we have S = 2. We then write the 2-dimensional model as ( Y

1 ),
where Y and 1 are 1×Q matrices (Y1, Y2, . . . , YQ) and (1, 1, . . . , 1). The D × 2
matrix α in (1) actually takes the special form (α β) where β is the offset value.
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Fig. 1. Example of leakage model with S = 2 and a model in Hamming weight, with
n = 4 values (no noise is added)

An illustration is provided in Fig. 1 where the parameter β ∈ RD is the
waveform when there is no signal, whereas α ∈ RD is the signal envelope. The

5 We may simplify (2) by incorporating β1 into the noise expectation, but the noise
is intrinsically zero-mean and it is clearer to exhibit a specific offset term.
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S = 9S = 2 S = 9

Fig. 2. Leakage evaluation of traces from DPA contest V4 (knowing the mask)

complete model is the sum αY + β, where Y is the Hamming weight of some
intermediate variable (such as the XOR operation T ⊕ k) on n = 4 bits. While
the leakage signal may be represented as a continuous curve as illustrated in
Fig. 1, the practical acquisition is done through a temporal series of D “discrete
samples”, typically within one clock period. For S = 2, we thus write (1) as

X = αY? + β1 + N (2)

where X is D × Q, α and β are D × 1, Y? and 1 = (1, . . . , 1) are 1 × Q, and
N is D × Q. Here Y is assumed centered: E(Y) = 0 = (0, . . . , 0) (since the
non-centered part is captured by the β1 term) and of unit variance for every q:
Var(Yq) = E(Y 2

q ) = 1.
For S ≥ 2, the actual value of S reflects the complexity of the model. For

example, in the weighted sum of bits model, the model for each trace can be
written as

∑n
s=1 αsYs+β, where Ys is the sth bit of the n-bit sensitive variable Y .

Accordingly, we have

S = n+ 1, α =
(
α1 . . . αn β

)
, Y = (Y1 · · ·Yn 1)

T
. (3)

This leakage model is more complex than before but may arise in practice.
For example, Fig. 2 plots the coefficients α1, . . . , α8 estimated of the traces taken
from an ATMega smartcard—the datasets are available from the DPA contest
V4 team [14]. In particular one can observe that samples around [50, 80] are
ordered by Hamming weight: this part of the trace resembles the upper left part
of Fig. 1 for S = 2. By analysing the (n+1)-variate model of (3), one can indeed
see that around [50, 80], the vectors α1, . . . , α8 are almost identical. However,
samples in intervals [170, 250] or [330, 400] have a more complex model. These
times, the eight vectors α1, . . . , α8 are clearly different, the leakage is 9-variate.

In the sequel, we consider both types of attacks: those with offline profiling
where α for each component of the model is precharacterized like in Fig. 2
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Is α
known?

DML(x, t) = argmink tr
(
(x− αy)TΣ−1(x− αy)

)
yes

Leakage model: Optimal distinguisher:

x = αy⋆ + n
∀q, nq ∼ N (0,Σ)
y⋆ = φ(t, k⋆)
y = φ(t, k)

noα ∈ RD×S,Σ ∈ RD×D

See section 3.1, Theorem 2

See section 3.1, Theorem 3

x ∈ RD×Q,y ∈ RS×Q DML,sto(x, t) = argmaxk tr
(
yT(yyT)−1y xTΣ−1x

)

Fig. 3. Mathematical expression for multivariate (D ≥ 1) optimal attacks with a linear
combination of models (S ≥ 1)

and also those where the model is learned online like in a Linear Regression
Attack [5].

3 Theoretical Results and Implementation

3.1 General Mathematical Expressions

In this section we derive the mathematical expression of the optimal distin-
guisher D in the general case of multivariate leakage (D ≥ 1), and multiple
models (S ≥ 1). An illustration of our results is given in Fig. 3 for the case when
the leakage is completely known (or profiled as in the template attack) and when
the leakage is unknown and estimated online.

Definition 1 (Optimal Distinguisher Knowing or Ignoring α).

DML(x, t) = argmax
k∈F2

p(x|t) and DML,sto(x, t) = argmax
k∈F2

max
α∈RD×S

p(x|t, α).

In both cases (Theorems 2 and 3 below) the result is a distinguisher which
is computed using simple matrix operations. While DML resembles a template
attack with Gaussian templates [3], DML,sto is a novel expression that results
from a non-trivial maximization over the matrix α and may be interpreted as a
generalization of a multivariate correlation power attack [1].

Theorem 2. The optimal maximum likelihood (ML) distinguisher [8] for Gaus-
sian noise writes

DML(x, t) = argmin
k

tr
(

(x− αy)
T
Σ−1(x− αy)

)
. (4)

Proof. From [8] we have DML(x, t) = argmaxk p(x|y) while from (1) we see
that p(x|y) = pN(x − αy). From the i.i.d. assumption the noise density pN(n)
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is given by

pN(n) =

Q∏

q=1

1√
(2π)D|detΣ|

exp−1

2
nq

TΣ−1nq (5)

=
1

(2π)DQ/2
1

(detΣ)Q/2
exp−1

2

(
Q∑

q=1

nq
TΣ−1nq

)
(6)

=
1

(2π)DQ/2(detΣ)Q/2
exp−1

2
tr
(
nTΣ−1n

)
. (7)

Thus pN(x−αy) is maximum when the expression tr
(
nTΣ−1n

)
for n = x−αy

is minimum. ut

Theorem 3. The optimal stochastic multivariate attack is given by

DML,sto(x, t) = argmax
k∈Fn

2

tr
(
yT(yyT)−1y xTΣ−1x

)
(8)

for which the optimal value of α is given by

αopt = (xyT)(yyT)−1. (9)

For the proof, we need some known results of linear algebra (Lemma 4) and
linear regression (Lemma 5).

Lemma 4. Let b an S × Q matrix, with S < Q. The S × S matrix bbT is
invertible if and only if b has full rank S, i.e., if and only if the S lines of b are
independent.

Proof. For any S × 1 column vector x, xTbbTx = ‖bTx‖2 = 0 implies bTx = 0
hence x = 0. Hence the matrix bbT is positive definite. ut

Lemma 5. Let a, b and α be respectively 1 × Q, S × Q and 1 × S with S <
Q, where b has full rank S. Then ‖a − αb‖2 reaches its minimum for α =
abT(bbT)−1.

Proof. Expanding the squared norm gives ‖a − αb‖22 = (a − αb)(a− αb)
T

=
aaT−2αbaT+αbbTαT. Therefore, the gradient ∂

∂α‖a−αb‖22 = −2baT+2bbTαT

vanishes if and only if αT = (bbT)−1baT, i.e., α = abT(bbT)−1 where we have
used the fact that bbT is invertible by Lemma 4. ut

Proof (Proof of Theorem 3). Let x′ = Σ−1/2 x and y′ = (yyT)−1/2 y. The
optimal distinguisher minimizes the following expression over α ∈ RD×S :

tr
(

(x− αy)
T
Σ−1(x− αy)

)
= tr

(
(x′ − α′y)(x′ − α′y)

T
)

=

D∑

d=1

‖x′ − α′dy‖2.



8 N. Bruneau, S. Guilley, A. Heuser, D. Marion and O. Rioul

By Lemma 5 the minimization over α′d yields α′d = (x′dy
T)(yyT)−1 for all

d = 1, . . . , D. This gives α′ = (x′yT)(yyT)−1 hence α = (xyT)(yyT)−1, which
remarkably does not depend on Σ.

The minimized value of the distinguisher is thus

min
α

tr
(

(x− αy)
T
Σ−1(x− αy)

)
= tr

(
(x− αopty)

T
Σ−1(x− αopty)

)

= tr
(
(Id− yT(yyT)−1)2xTΣ−1x

)

= tr
(
xTΣ−1x

)
− tr

(
yT(yyT)−1 xTΣ−1x

)

where Id is the D × D identity matrix and where tr
(
xTΣ−1x

)
is a constant

independent of k. This proves Theorem 3. ut

The expression of DML,sto(x, t) given in Theorem 3 consists in the trace of a
Q×Q matrix, which can be admittedly very large. It can be, however, rewritten
in a way that is easier to compute when Q is much greater than S and D:

Corollary 6 (Alternative Expression of DML,sto). Letting x′ = Σ−1/2 x,
and y′ = (yyT)−1/2 y as in the proof of Theorem 3, we have

DML,sto(x, t) = argmax
k∈Fn

2

‖x′y′T‖F . (10)

Here the Frobenius norm is of a D × S matrix.

Proof. Let us write (yyT)−1 = (yyT)−1/2(yyT)−1/2 in (8). By the properties of
the trace,

tr
(
yT(yyT)−1y xTΣ−1x

)
= tr

(
(yyT)−

1
2 y(Σ−

1
2 x)

T)

︸ ︷︷ ︸
S ×D

(
(yyT)−

1
2 y(Σ−

1
2 x)

T)T

︸ ︷︷ ︸
D × S

= tr
(

(y′x′
T

)(y′x′
T

)
T)

= ‖x′y′T‖2F . ut

3.2 Mathematical Expressions for S = 2

In order to provide interpretations for the optimal distinguisher expressions, we
detail how an optimal attack unfolds when the leakage consists in a sum of a
modulated scalar model and an offset (S = 2). The cases for profiled attacks
(denoted DS=2

ML ) and non-profiled attacks (denoted DS=2
ML,sto) are presented in

Fig. 4.
Interestingly, when S = 2, the template attack can decompose in two steps

(affine projection followed by a Euclidean distance to the model). Remarkably,
the projection vector is the same for all key guesses. This extends similar re-
sults [2] where only the linear relationship between leakage and model is ex-
plored. As for the online attack, DS=2

ML,sto consists in a sum of square of CPA
attacks on transformed data, aiming at orthogonalizing the noise.
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α, β ∈ RD×1,Σ ∈ RD×D
x ∈ RD×Q,y ∈ R1×Qx = αy⋆ + β1+ n

∀q, nq ∼ N (0,Σ)
y⋆ = φ(t, k⋆)
y = φ(t, k)

Affine projection: Data transformation:

Leakage model:

yes noknown?
Are α, β

Univariate ML attack: New multivariate CPA attack:

x̃ = αTΣ−1

αTΣ−1α
(x− β1) ∈ R1×Q x′ = Σ−1/2x

DS=2
ML (x, t) = argmink ||x̃− y||22 DS=2

ML,sto(x, t) = argmaxk
∑D

d=1

Ĉov(x′
d,y)

2

V̂ar(y)

Fig. 4. Modus operandi for multivariate (D ≥ 1) optimal attacks with one model Y
associated to envelope α ∈ RD×1 and a constant offset β ∈ RD×1 (S = 2)

3.3 Efficient Implementation

Both DML and DML,sto can be optimized using the idea presented in [9]. This
article applies a precomputation step in the case the number of traces is larger
than the number of possible plaintexts (Q > #T = 2n). In this case, all summa-
tions

∑
q can be advantageously replaced by

∑
t

∑
tq=t

. In most cases, the sum∑
tq=t

can be achieved on the fly, and does not involve an hypothesis on the key.

Therefore, a speed gain of 2n (the cardinality of the key space) is expected.

Such optimization strategy can be applied to DML. Indeed, let us define
x′ = Σ−1/2x and α′ = Σ−1/2α. Then,

DML(x, t) = argmin
k

D∑

d=1

‖x′d − α′dy‖22 (see Corollary 6)

= argmin
k

D∑

d=1

∑

t∈Fn
2


 ∑

q/tq=t

x′
2
d,q − 2

∑

q/tq=t

x′d,qα
′
dy(t, k) + (

∑

q/tq=t

1)(α′dy(t, k))2




= argmin
k

D∑

d=1

∑

t∈Fn
2

−2
( ∑

q/tq=t

x′d,q

)

︸ ︷︷ ︸
denoted as x′d,t

α′dy(t, k) +
( ∑

q/tq=t

1
)

︸ ︷︷ ︸
denoted as nt

(α′dy(t, k))2. (11)

Notice that at line (11), the term
∑
q/tq=t

x′
2
d,q which does not depend on the

key, is simplified. The fast version of this computation is given in Alg. 1.
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input : x, t
output: DML(x, t)

// Initialize to zero a matrix x′d,t of size D × 2n

// Initialize to zero a vector nt of length 2n

1 for q ∈ {1, . . . , Q} do
2 x′tq ← x′tq +Σ−1/2xq

3 ntq ← ntq + 1

4 end

5 return argmink∈K
∑D

d=1

∑
t−2x′tα

′
dy(t, k) + nt(α

′
dy(t, k))2 // As in (11)

Algorithm 1: Fast computation algorithm for DML

The same optimization applies to DML,sto. Indeed, in the expression (10) of

DML,sto(x, t) = argmaxk ‖x′y′T‖2F , one can write

‖x′y′T‖2F =
∑

s,d

( Q∑

q=1

x′d,qy
′
s,q

)2
=
∑

s,d

(∑

t∈Fn
2

( ∑

q/tq=t

x′d,t

)

︸ ︷︷ ︸
denoted as x′d,t

(
y′s(t, k)

)

︸ ︷︷ ︸
denoted as y′s,t

)2
. (12)

This means that x′ can be obtained by simple accumulation. The term y′s(t, k)
requires the computation of yyT. In the case Q� 1, it can be assumed that the
texts t are uniformly distributed. Hence, when Q → +∞, by the law of large
numbers,

1

Q
yyT =

1

Q

Q∑

q=1

yqyq
T =

∑

t∈Fn
2

∑
q/tq=t

1

Q
y(t, k)y(t, k)

T → 1

2n

∑

t∈Fn
2

y(t, k)y(t, k)
T
.

Therefore, in (12), y′s(t) can also be precomputed. To the best of our knowledge,
this optimization has never been discussed previously. The resulting distinguish-
ing procedure is given in Alg. 2. At line (4), the argument of the Frobenius
norm can be computed by a fast matrix multiplication. Also, we notice that
the matrix inversion in Alg. 2 is actually a precomputation which involves only
the model. Hence the computational complexity of the optimal stochastic attack
simply consists in traces accumulation per class, and as many matrix products
and Frobenius norms as keys to be guessed.

4 Practical Results

4.1 Characterization of Σ

In this article, we assume that the attacker knows the noise covariance matrix.
We give a straightforward procedure for the estimation.
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input : x, t
output: DML,sto(x, t)

// Precompute the #K = 2n matrices y′(k) of size S × 2n, such that

y′(k) = ( 1
2n

∑
t y(t, k)y(t, k)T)−1/2y(k). Note that there is only one

matrix if the EIS holds [12, Def. 2]

// Initialize to zero a matrix x′d,t of size D × 2n

1 for q ∈ {1, . . . , Q} do
2 x′tq ← x′tq +Σ−1/2xq // In-place accumulation of a row in matrix x′

3 end

4 return argmaxk∈K ‖x′y′(k)
T‖F // As in (12)

Algorithm 2: Fast computation algorithm for DML,sto when t is balanced

1. collect Q traces (i.e., a matrix x ∈ RD×Q) where the plaintext is fixed to a
given value,

2. estimate Σ as Σ̂ = 1
Q−1

(
x− 1

Qx1T1
)(

x− 1
Qx1T1

)T
, where 1 = (1, . . . , 1) ∈

R1×Q. This estimator is sample covariance matrix, which is unbiased.

Remark 1. Notice that Σ cannot be obtained by a direct profiling on the same
traces to be used for the attack. Indeed, in those traces, the plaintext is vary-
ing, hence the attacker would use for Σ̂ the covariance matrix of x − αopty,
where αopt is equal to αopt = (xyT)(yyT)−1 (recall (9)). Hence, Σ̂ = 1

Q−1 (x −
αopty)(x− αopty)

T
. But the distinguisher DML,sto is

DML,sto(x, t) = argmin
k∈Fn

2

min
α∈RD×S

tr
(

(x− αy)
T
Σ̂−1(x− αy)

)

= argmin
k∈Fn

2

min
α∈RD×S

tr
(
Σ̂−1(x− αy)(x− αy)

T
)

= argmin
k∈Fn

2

tr
(
Σ̂−1(x− αopty)(x− αopty)

T
)

(13)

= argmin
k∈Fn

2

tr
(

(Q− 1)Σ̂−1Σ̂
)

= argmin
k∈Fn

2

D(Q− 1). (14)

Indeed, at line (13), we demonstrated in the proof of Theorem 3 in that the
minimal value (9) of α is independent on Σ. Eventually, it can be seen at line (14)
that the distinguisher with Σ̂ instead of Σ does not depend on the key6.

6 Indeed, argmink cst = Fn
2 , meaning that all keys are equiprobable. Intuitively, when

both the noise and the model parameters are regressed at the same time, any key
achieves the same match between parametric model and side-channel observations.
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4.2 Attacks on Simulated Traces

In this subsection we present simulations when α is known exactly or regressed
online. We consider an attack of PRESENT, where the SBox is n = 4→ n = 4.
For the sake of the simulations, we choose two kinds of α:

– “identical”: all the n = 4 bits leak the same waveform, like in the Hamming
weight model,

– “proportional”: the waveform has weight 1 for SBox bit 0, and is multiplied
by 2 (resp. 3 and 4) for SBox bit 1 (resp. 2 and 3).

The waveform for each bit is that represented in Fig. 1 (upper left graph).
Specifically, for all 1 ≤ d ≤ D and 1 ≤ s ≤ S, the envelope consists in damped
oscillations:

αd,s = e−
2d
D cos

(
2π

d

D

)
for the “identical” case, (15)

αd,s = s · e− 2d
D cos

(
2π

d

D

)
for the “proportional” case. (16)

The noise is chosen normal, using two distributions:

– “isotropic”: the covariance matrix is σ2 times the D ×D identity,
– “auto-regressive” (of “AR” for short): the covariance matrix element at po-

sition (d, d′), for 1 ≤ d, d′ ≤ D, is σ2ρ|d−d
′|. This noise is not independent

from sample to its neighbours, but the correlation ρ decreases exponentially
as samples get further apart.

Proposition 7. The success probability of DML is greater than that of DML,sto.

Proof. Indeed, according to [8], DML maximizes the success probability. Thus,
the distinguisher DML,sto has a smaller success probability. The success proba-
bility is the same if the minimization over α in the proof of Theorem 3 yields
the exact matrix α used in the model (1). ut

Simulations allow to estimate the loss in terms of efficiency of not knowing
the model (Proposition 7), by comparing distinguishers DML ((4)) and DML,sto

((8)). The success rate of the optimal distinguisher DML is drawn in order to
materialize the limit between feasible (below) and unfeasible (above) attacks.

Results for low noise (σ = 1) are represented in Fig. 5. We can see that the
Hamming weight model is clearly harder to attack, because the leakage of one
bit cannot be distinguished from that of the other bits. Besides, we notice that
the stochastic attack is performing much worse than the optimal attack: about
10 times more traces are required for an equivalent success probability in key
extraction.

Results for high noise (σ = 4) are represented in Fig. 6. Again, the “propor-
tional” model is easier to attack than the “identical” model (for each bit). Now,
we also see that the gap between the optimal ML attack and the stochastic at-
tack narrows: only about 5 times more traces are needed for the stochastic attack
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to perform as well as the optimal attack in terms of success probability. Besides,
we notice that the AR noise is favorable to the attacker. It is therefore important
in practice for the attacker to characterize precisely the noise distribution (recall
the methodology presented in Sec. 4.1).

α identical and Σ isotropic α identical and Σ auto-regressive

α proportional and Σ isotropic α proportional and Σ auto-regressive

Fig. 5. Simulations for D = 3, S = 5, n = 4, σ = 1 (AR noise with ρ = 0.5).

Clearly, these conclusions are in line with the template versus stochastic (of-
fline) study carried out in [6]: for high noise, the (online) learning of the model
requires more traces, hence is more accurate. Therefore, the performance of
DML,sto gets closer to that of DML than for low noise.

4.3 Attacks on Real-World Traces

We now compare CPA with DML and DML,sto on measurements provided by the
DPA contest V4. These traces have have been acquired from an 8-bit processor,
hence have a signal-to-noise ratio greater than one, reaching 7 at some points
in time. The interval for our case-study is [170, 250] from Fig. 2, hence D = 80.
Regarding ML, two learning strategies have been implemented:

1. the model is learned from a disjoint set of 5k traces, which is the operational
scenario for a profiled attack;

2. the model is learned from the traces being attacked (denoted self in Fig. 7).
This case does not represent a realistic attack, but is interesting in that it
highlights the best possible attacker.
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α identical and Σ isotropic α identical and Σ auto-regressive

α proportional and Σ isotropic α proportional and Σ auto-regressive

Fig. 6. Simulations for D = 3, S = 5, n = 4, σ = 4 (AR noise with ρ = 0.5).

The attack success rates are plotted in Fig. 7. One can see that both variants of
DML and DML,sto achieve better with S = 9 than with S = 2. This is consistent
with the analysis carried out in Sec. 2.3. Actually, the CPA has a very poor
performance because the model is actually very far from a Hamming weight:
as can be seen in Fig. 2.3(a), some parameters αi (e.g., for i = 2 and 6) are
positive in region [180, 200] whereas others αj (e.g., for j = 1, 3, 4 and 5)
are negative. The compensating signs account why the Hamming weight model
is inappropriate. The ML with model pre-characterization on the traces under
attack show that very strong attacks are possible (using a few traces only).
Interestingly, when the model used by ML is characterized on 5k traces distinct
from the traces being attacked, the performance is almost similar. Eventually,
the online stochastic attack derived in this paper (DML,sto) performs better than
CPA (the distinguisher being the maximum value of the Pearson correlation over
the D = 80 samples).

5 Conclusions and Perspectives

Distinguishing a key from both multivariate leakage samples and multiple mod-
els can be done in one step as shown in this paper. A compact expression of
the distinguisher is provided, using matrix operations. The strategy is applied
to real-world traces in profiled and non-profiled scenarios. The resulting attack
is more efficient than the traditional approach “dimensionality reduction then
stochastic (linear regression) attack)”. The new multivariate distinguisher out-
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Fig. 7. Comparison of success rate of CPA, DML,sto for S ∈ {9, 2}, and DML for S ∈
{9, 2} (with two distinct learning methods)

performs the other state-of-the-art attacks. The presented methodology allows
for leakage agnostic attacks on vectorial leakage measurements and complex
models. In addition, the matrix-based expression of the distinguisher benefits
from matrix-oriented software that implements computational optimizations for
large dimensions.

A companion future work would consist in determining the optimal model
dimensionality and basis from any acquisition campaign. Another perspective
is to adapt the methodology to masked implementations, as already done for
monovariate leakage in [4], yet for this case the distinguishers will certainly not
exhibit simple closed-form expressions. However, we believe that the approach
could be fruitful in practice backed with suitable optimization software.
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