J. Duan, H. Huang, Z. Lu, P. J. Poole, C. Wang et al., Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers, Appl. Phys. Lett, vol.112, issue.12, p.121102, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02306951

A. Becker, Widely tunable narrow-linewidth 1.5 ?m light source based on a monolithically integrated quantum dot laser array, Appl. Phys. Lett, vol.110, issue.18, p.181103, 2017.

G. Eisenstein and D. Bimberg, Green Photonics and Electronics, 2017.

H. Huang, Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: Transition from short-to long-delay regimes, Opt. Express, vol.26, issue.2, pp.1743-1751, 2018.

L. Lin, Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states, Opt. Lett, vol.43, issue.2, pp.210-213, 2018.

M. Sciamanna and K. A. Shore, Physics and applications of laser diode chaos, Nature Photon, vol.9, pp.151-162, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01132505

K. Petermann, Laser Diode Modulation and Noise, 1988.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2012.

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, Perspective: The future of quantum dot photonic integrated circuits, APL Photon, vol.3, issue.3, p.30901, 2018.

C. H. Cox, E. I. Iii, G. Ackerman, J. L. Betts, and . Prince, Limits on the performance of RF-over-fiber links and their impact on device design, IEEE Trans. Microw. Theory Techn, vol.54, issue.2, pp.906-920, 2006.

F. Lelarge, Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 ?m, IEEE J. Sel. Topics Quantum Electron, vol.13, issue.1, pp.111-124, 2007.

A. Capua, Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser, Opt. Express, vol.15, issue.9, pp.5388-5393, 2007.

A. Kovsh, Quantum-dot comb laser with low relative-intensity noise for each mode, SPIE Newsroom, 2008.

A. Y. Liu, T. Komljenovic, M. L. Davenport, A. C. Gossard, and J. E. Bowers, Reflection sensitivity of 1.3 ?m quantum dot lasers epitaxially grown on silicon, Opt. Express, vol.25, issue.9, pp.9535-9543, 2017.

Y. Zhou, C. Zhou, C. Cao, J. Du, Q. Gong et al., Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge, Opt. Express, vol.25, issue.23, pp.28817-28824, 2017.

G. Lin, H. Tang, H. Cheng, and H. Chen, Analysis of relative intensity noise spectra for uniformly and chirpily stacked InAs-InGaAs-GaAs quantum dot lasers, J. Lightw. Technol, vol.30, issue.3, pp.331-336, 2012.

K. Lüdge, E. Schöll, E. Viktorov, and T. Erneux, Analytical approach to modulation properties of quantum dot lasers, J. Appl. Phys, vol.109, issue.10, p.103112, 2011.

M. Ishida, Photon lifetime dependence of modulation efficiency and K factor in 1.3 ?m self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth, Appl. Phys. Lett, vol.85, issue.18, pp.4145-4147, 2004.

M. Gioannini and I. Montrosset, Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers, IEEE J. Quantum Electron, vol.43, issue.10, pp.941-949, 2007.

A. Fiore and A. Markus, Differential gain and gain compression in quantum-dot lasers, IEEE J. Quantum Electron, vol.43, issue.4, pp.287-294, 2007.

J. Even, C. Wang, and F. Grillot, From basic physical properties of InAs/InP quantum dots to state-of-the-art lasers for 1.55 ?m optical communications: An overview, Semiconductor Nanocrystals and Metal Nanoparticles Physical Properties and Device Applications, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01402662

R. Pawlus, S. Breuer, and M. Virte, Relative intensity noise reduction in a dual-state quantum-dot laser by optical feedback, Opt. Lett, vol.42, issue.21, pp.4259-4262, 2017.

J. Hayau, Effect of the wetting layer on intensity noise in quantum dot laser, Proc. 35th Eur. Conf. Opt. Commun, pp.1-2, 2009.

A. Mcdaniel and A. Mahalov, Stochastic differential equation model for spontaneous emission and carrier noise in semiconductor lasers, IEEE J. Quantum Electron, vol.54, issue.1, 2018.

F. Bello, Q. Y. Lu, A. Abdullaev, M. Nawrocka, and J. F. Donegan, Linewidth and noise characterization for a partially-slotted, single mode laser, IEEE J. Quantum Electron, vol.50, issue.9, pp.1-5, 2014.

D. Marcuse, Computer simulation of laser photon fluctuations: Theory of single-cavity laser, IEEE J. Quantum Electron, vol.20, issue.10, pp.1139-1148, 1984.

C. Wang, M. Osi?ski, J. Even, and F. Grillot, Phase-amplitude coupling characteristics in directly modulated quantum dot lasers, Appl. Phys. Lett, vol.105, issue.22, p.221114, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01091745

C. Wang, J. Zhuang, F. Grillot, and S. Chan, Contribution of offresonant states to the phase noise of quantum dot lasers, Opt. Express, vol.24, issue.26, pp.29872-29881, 2016.

M. Ahmed, M. Yamada, and M. Saito, Numerical modeling of intensity and phase noise in semiconductor lasers, IEEE J. Quantum Electron, vol.37, issue.12, pp.1600-1610, 2001.

K. Schuh, P. Gartner, and F. Jahnke, Combined influence of carrierphonon and coulomb scattering on the quantum-dot population dynamics, Phys. Rev. B, Condens. Matter, vol.87, issue.3, p.35301, 2013.

A. Abdollahinia, Temperature stability of static and dynamic properties of 1.55 ?m quantum dot lasers, Opt. Express, vol.26, issue.5, pp.6056-6066, 2018.

I. Joindot, Measurements of relative intensity noise (RIN) in semiconductor lasers, J. Physique III, EDP Sci, vol.2, issue.9, pp.1591-1603, 1992.
URL : https://hal.archives-ouvertes.fr/jpa-00248828

R. Schatz, Dynamics of spatial hole burning effects in DFB lasers, IEEE J. Quantum Electron, vol.31, issue.11, 1981.

C. H. Henry, Theory of the phase noise and power spectrum of a single mode injection laser, IEEE J. Quantum Electron, vol.19, issue.9, pp.1391-1397, 1983.

R. Pawlus, L. L. Columbo, P. Bardella, S. Breuer, and M. Gioannini, Intensity noise behavior of an InAs/InGaAs quantum dot laser emitting on ground states and excited states, Opt. Lett, vol.43, issue.4, pp.867-870, 2018.

, He is currently pursuing the Ph.D. degree with the Department of Communication and Electronics, Jianan Duan was born in Yinchuan, China, in 1992. He received the bachelor's degree in optronics engineering from the Huazhong University of Science and Technology, 2016.

X. Wang, She received the B.E. degree in electronic science and technology from the Hefei University of Technology, Her research activity is focused on dynamics and nonlinear dynamics of quantum cascade lasers, 1995.