C. Sun, Single-chip microprocessor that communicates directly using light, Nature, vol.528, issue.7583, p.534, 2015.

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester et al., GaAs based quantum dot lasers, Advances in Semiconductor Lasers, vol.86, p.42, 2012.

, ) all fonts and special characters are correct, and (4) all text and figures fit within the red margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission

J. Duan, H. Huang, Z. Lu, P. Poole, C. Wang et al., Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers, Appl. Phys. Lett, vol.112, issue.12, p.121102, 2018.

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, Perspective: The future of quantum dot photonic integrated circuits, APL Photon, vol.3, issue.3, p.30901, 2018.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, Development of Quantum Dot Lasers for DataCom and Silicon Photonics Applications, IEEE J. Sel. Top. Quantum Electron, vol.23, issue.6, pp.1-7, 2017.

C. Otto, B. Globisch, K. Lüdge, E. Schöll, and T. Erneux, Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback, International J. Bifurcation & Chaos, vol.22, p.1250246, 2012.

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang et al., Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon, J. Opt. Soc. Am. B, vol.35, issue.11, pp.2780-2787, 2018.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, The dynamical complexity of optically injected semiconductor lasers, Phys. Rep, vol.416, pp.1-128, 2005.

H. Huang, K. Schires, P. J. Poole, and F. Grillot, Non-degenerate four-wave mixing in an optically injection-locked InAs/InP quantum dot Fabry-Perot laser, Appl. Phys. Lett, vol.106, p.143501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02287164

M. Osinski and J. Buus, Linewidth broadening factor in semiconductor lasers -An overview, vol.23, pp.9-29, 1987.

T. L. Koch and R. A. Linke, Effect of nonlinear gain reduction on semiconductor laser wavelength chirping, Appl. Phys. Lett, vol.48, p.613, 1986.

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman et al., Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor, Appl. Phys. Lett, vol.112, issue.25, p.25111, 2018.

C. Wang, K. Schires, M. Osi?ski, P. J. Poole, and F. Grillot, Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking, Sci. Rep, vol.6, p.27825, 2016.

D. Jung, J. Norman, M. Kennedy, C. Shang, B. Shin et al., High efficiency low threshold current 1.3 µm InAs quantum dot lasers on on-axis (001) GaP/Si, Appl. Phys. Lett, vol.111, issue.12, p.122107, 2017.

H. Tan, Z. Mi, P. Bhattacharya, and D. Klotzkin, Dependence of Linewidth Enhancement Factor on Duty Cycle in InGaAs-GaAs Quantum-Dot Lasers, IEEE Photonics Technol. Lett, vol.20, issue.8, 2008.

, ) all fonts and special characters are correct, and (4) all text and figures fit within the red margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission