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Longguang Li, Stefan M. Moser, Ligong Wang, Michèle Wigger⇤

18 February 2019

Abstract

This paper studies the capacity of a general multiple-input multiple-output

(MIMO) free-space optical intensity channel under a per-input-antenna peak-power

constraint and a total average-power constraint over all input antennas. The main

focus is on the scenario with more transmit than receive antennas. In this scenario,

different input vectors can yield identical distributions at the output, when they

result in the same image vector under multiplication by the channel matrix. We

first determine the most energy-efficient input vectors that attain each of these

image vectors. Based on this, we derive an equivalent capacity expression in terms

of the image vector, and establish new lower and upper bounds on the capacity

of this channel. The bounds match when the signal-to-noise ratio (SNR) tends to

infinity, establishing the high-SNR asymptotic capacity. We also characterize the

low-SNR slope of the capacity of this channel.

Index terms — Average- and peak-power constraint, channel capacity, direct

detection, Gaussian noise, infrared communication, multiple-input multiple-output

(MIMO) channel, optical communication.

1 Introduction
This paper considers an optical wireless communication system where the transmitter
modulates the intensity of optical signals coming from light emitting diodes (LEDs)
or laser diodes (LDs), and the receiver measures incoming optical intensities by means
of photodetectors. Such intensity-modulation-direct-detection (IM-DD) systems are ap-
pealing because of their simplicity and their good performance at relatively low costs.
As a first approximation, the noise in such systems can be assumed to be Gaussian and
independent of the transmitted signal. Inputs are nonnegative and typically subject to
both peak- and average-power constraints, where the peak-power constraint is mainly
due to technical limitations of the used components and where the average-power con-
straint is imposed by battery limitations and safety considerations. We should notice
that, unlike in radio-frequency communication, the average-power constraint applies di-
rectly to the transmit signal and not to its square, because the power of the transmit
signal is proportional to the optical intensity and hence relates directly to the transmit
signal.

IM-DD systems have been extensively studied in recent years [1]–[15], with an in-
creasing interest in multiple-input multiple-output (MIMO) systems where transmitters
are equipped with nT > 1 LEDs or LDs and receivers with nR > 1 photo detectors. Prac-
tical transmission schemes for such systems with different modulation methods, such as

⇤
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pulse-position modulation or LED index modulation based on orthogonal frequency-
division multiplexing, were presented in [16]–[18]. Code constructions were described in
[19]–[21].

The main focus of this manuscript is on the fundamental limits of MIMO IM-DD
systems, more precisely on their capacity. In previous works, the capacity of MIMO
channels was mostly studied in special cases: 1) the channel matrix has full column
rank, i.e., there are fewer transmit than receive antennas: nT  nR, and the channel
matrix is of rank nT [11]; 2) the multiple-input single-output (MISO) case where the
receiver is equipped with only a single antenna: nR = 1; and 3) the general MIMO
case but with only a peak-power constraint [14] or only an average-power constraint
[12], [13]. More specifically, [11] determined the asymptotic capacity at high signal-to-
noise ratio (SNR) when the channel matrix is of full column-rank. For general MIMO
channels with average-power constraints only, the asymptotic high-SNR capacity was
determined in [12], [13]. The coding schemes of [12], [13] were extended to channels
with both peak- and average-power constraints, but they were only shown to achieve
the high-SNR pre-log (degrees of freedom), and not necessarily the exact asymptotic
capacity.

The works most related to ours are [9], [10], [15]. For the MISO case, [9], [10] show
that the optimal signaling strategy is to rely as much as possible on antennas with larger
channel gains. Specifically, if an antenna is used for active signaling in a channel use,
then all antennas with larger channel gains should transmit at maximum allowed peak
power A, and all antennas with smaller channel gains should be silenced, i.e., send 0. It
is shown that this antenna-cooperation strategy is optimal at all SNRs.

In [15], the asymptotic capacity in the low-SNR regime is considered for general
MIMO channels under both a peak- and an average-power constraint. It is shown that
the asymptotically-optimal input distribution in the low-SNR regime puts the antennas
in a certain order, and assigns positive mass points only to input vectors in {0,A}nT in
such a way that, if a given input antenna is set to full power A, then also all preceding
antennas in the specified order are set to A. This strategy is reminiscent of the optimal
signaling strategy for MISO channels [9], [10]. However, whereas the optimal order in
[15] needs to be determined numerically, in the MISO case the optimal order naturally
follows the channel strengths of the input antennas. Furthermore, the order in [9], [10]
is optimal at all SNRs, whereas the order in [15] is shown to be optimal only in the
asymptotic low-SNR limit.

The current paper focuses on MIMO channels with more transmit than receive an-
tennas:

nT > nR > 1. (1)

Its main contributions are as follows:

1. Minimum-Energy Signaling: The optimal signaling strategy for MISO channels of
[9], [10] is generalized to MIMO channels with nT > nR > 1. For each “image
vector” x̄ — an nR-dimensional vector that can be produced by multiplying an
input vector x by the channel matrix — Lemma 5 identifies the input vector
xmin that induces x̄ with minimum total energy. The minimum-energy signaling
strategy partitions the image space of vectors x̄ into

�nT
nR

�
parallelepipeds, each one

spanned by a different subset of nR columns of the channel matrix (see Figures 1
and 2). In each parallelepiped, the minimum-energy signaling sets the nT � nR
inputs corresponding to the columns that were not chosen either to 0 or to A

according to a predescribed rule and uses the nR inputs corresponding to the
chosen columns for signaling within the parallelepiped.

2. Equivalent Capacity Expression: Using Lemma 5, Proposition 7 expresses the ca-
pacity of the MIMO channel in terms of the random image vector X̄. In particular,
the power constraints on the input vector are translated into a set of constraints
on X̄.
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3. Maximizing the Trace of the Covariance Matrix: The low-SNR slope of the capacity
of the MIMO channel is determined by the trace of the covariance matrix of X̄
[15]. Lemmas 9, 10, and 11 establish several properties for the optimal input
distribution that maximizes this trace. They restate the result in [15] that the
covariance-trace maximizing input distribution puts positive mass points only on
{0,A}nT in a way that if an antenna is set to A, then all preceding antennas in a
specified order are also set to A. The lemmas restrict the search space for finding
the optimal antenna ordering and show that the optimal probability mass function
puts nonzero probability to the origin and to at most nR + 1 other input vectors.

4. Lower Bounds: Lower bounds on the capacity of the channel of interest are ob-
tained by applying the Entropy Power Inequality (EPI) [22] and choosing input
vectors that maximize the differential entropy of X̄ under the imposed power con-
straints; see Theorems 14 and 15.

5. Upper Bounds: Three capacity upper bounds are derived by means of the equiv-
alent capacity expression in Proposition 7 and the duality-based upper-bounding
technique for capacity; see Theorems 16, 17, and 18. Another upper bound uses
simple maximum-entropy arguments and algebraic manipulations; see Theorem 19.

6. Asymptotic Capacity: Theorem 20 presents the asymptotic capacity when the SNR
tends to infinity, and Theorem 21 gives the slope of capacity when the SNR tends
to zero. (This later result was already proven in [15], but as described above, our
results simplify the computation of the slope.)

The paper is organized as follows. We end the introduction with a few notational
conventions. Section 2 provides details of the investigated channel model. Section 3
identifies the minimum-energy signaling schemes. Section 4 provides an equivalent ex-
pression for the capacity of the channel. Section 5 shows properties of maximum-variance
signaling schemes. Section 6 presents all new lower and upper bounds on the channel
capacity, and also gives the high- and low-SNR asymptotics. The paper is concluded in
Section 7. Most of the proofs are in the appendices.

Notation: We distinguish between random and deterministic quantities. A random
variable is denoted by a capital Roman letter, e.g., Z, while its realization is denoted
by the corresponding small Roman letter, e.g., z. Vectors are boldfaced, e.g., X denotes
a random vector and x its realization. All the matrices in this paper are deterministic,
which are denoted in capital letters, and are typeset in a special font, e.g., H. Constants
are typeset either in small Romans, in Greek letters, or in a special font, e.g., E or A.
Entropy is typeset as H(·), differential entropy as h(·), and mutual information as I(·; ·).
The relative entropy (Kullback-Leibler divergence) between probability vectors p and q
is denoted by D(pkq). We will use the L1 -norm, which we indicate by k · k1, while k · k2
denotes the L2 -norm. The logarithmic function log(·) denotes the natural logarithm.

2 Channel Model
Consider an nR ⇥ nT MIMO channel

Y = Hx+ Z, (2)

where x = (x1, . . . , xnT)
T denotes the nT-dimensional channel input vector, where Z

denotes the nR-dimensional noise vector with independent standard Gaussian entries,

Z ⇠ N (0, I), (3)

and where

H = [h1,h2, . . . ,hnT ] (4)
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is the deterministic nR⇥nT channel matrix with nonnegative entries (hence h1, . . . ,hnT

are nR-dimensional column vectors).
The channel inputs correspond to optical intensities sent by the LEDs, hence they

are nonnegative:

xk 2 R+
0 , k = 1, . . . , nT. (5)

We assume the inputs are subject to a peak-power (peak-intensity) and an average-power
(average-intensity) constraint:

Pr
⇥
Xk > A

⇤
= 0, 8 k 2 {1, . . . , nT}, (6a)

E
⇥
kXk1

⇤
 E, (6b)

for some fixed parameters A,E > 0. As mentioned in the introduction, the average-
power constraint is on the expectation of the channel input and not on its square. Also
note that A describes the maximum power of each single LED, while E describes the
allowed total average power of all LEDs together. We denote the ratio between the
allowed average power and the allowed peak power by ↵:

↵ , E

A
. (7)

Throughout this paper, we assume that

rank(H) = nR. (8)

In fact, if r , rank(H) is less than nR, then the receiver can first compute U
TY, where

U⌃V
T denotes the singular value decomposition of H, and then discard the nR�r entries

in U
TY that correspond to zero singular values. The problem is then reduced to one for

which (8) holds.1
In this paper we are interested in deriving capacity bounds for this channel. The

capacity has the standard formula

CH(A,↵A) = max
PX satisfying (6)

I(X;Y). (9)

The next proposition shows that, when ↵ > nT
2 , the channel essentially reduces to

one with only a peak-power constraint. The other case where ↵  nT
2 will be the main

focus of this paper.

Proposition 1. If ↵ > nT
2 , then the average-power constraint (6b) is inactive, i.e.,

CH(A,↵A) = CH

⇣
A,

nT

2
A

⌘
, ↵ >

nT

2
. (10)

If ↵  nT
2 , then there exists a capacity-achieving input distribution PX in (9) that

satisfies the average-power constraint (6b) with equality.

Proof: See Appendix A.
We can alternatively write the MIMO channel as

Y = x̄+ Z, (11)

where we set

x̄ , Hx. (12)
1
A similar approach can be used to handle the case where the components of the noise vector Z are

correlated.
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We introduce the following notation. For a matrix M = [m1, . . . ,mk], where {mi} are
column vectors, define the set

R(M) ,
(

kX

i=1

�imi : �1, . . . ,�k 2 [0,A]

)
. (13)

Note that this set is a zonotope. Since the nT-dimensional input vector x is constrained
to the nT-dimensional hypercube [0,A]nT , the nR-dimensional image vector x̄ takes
value in the zonotope R(H).

For each x̄ 2 R(H), let

S(x̄) ,
�
x 2 [0,A]nT : Hx = x̄

 
(14)

be the set of input vectors inducing x̄. In the following section we derive the most
energy-efficient signaling method to attain a given x̄. This will allow us to express the
capacity in terms of X̄ = HX instead of X, which will prove useful.

3 Minimum-Energy Signaling
The goal of this section is to identify for every x̄ 2 R(H) the minimum-energy choice
of input vector x that induces x̄. Since the energy of an input vector x is kxk1, we are
interested in finding an xmin that satisfies

kxmink1 = min
x2S(x̄)

kxk1. (15)

We start by describing (without proof) the choice of xmin in a 2⇥ 3 example.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

h1

h2h3

Ah2 +D{1,3}

D{2,3}

D{1,2} R(H)

Figure 1: The zonotope R(H) for the 2⇥ 3 MIMO channel matrix H = [2.5, 2, 1; 1, 2, 2]
and its minimum-energy decomposition into three parallelograms.

Example 2. Consider the 2⇥ 3 MIMO channel matrix

H =

✓
2.5 2 1
1 2 2

◆
(16)
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composed of the three column vectors h1 = (2.5, 1)T, h2 = (2, 2)T, and h3 = (1, 2)T.
Figure 1 depicts the zonotope R(H) and partitions it into three parallelograms based
on three different forms of xmin. For any x̄ in the parallelogram D{1,2} , R

�
H{1,2}

�
,

where H{1,2} , [h1, h2], the minimum-energy input xmin inducing x̄ has 0 as its third
component. Since H{1,2} has full rank, there is only one such input inducing x̄:

xmin =

✓
H

�1
{1,2}x̄

0

◆
, if x̄ 2 D{1,2}. (17)

Similarly, for any x̄ in the parallelogram D{2,3} , R
�
H{2,3}

�
, where H{2,3} , [h2, h3],

the minimum-energy input xmin inducing x̄ has 0 as its first component:

xmin =

✓
0

H
�1
{2,3}x̄

◆
, if x̄ 2 D{2,3}. (18)

Finally, for any x̄ in the parallelogram Ah2 + D{1,3}, where D{1,3} , R
�
H{1,3}

�
and

H{1,3} , [h1, h3], the minimum-energy input xmin inducing x̄ has A as its second
component:

xmin =

0

@
xmin,1

A

xmin,3

1

A, if x̄ 2 Ah2 +D{1,3}, (19)

where
✓
xmin,1

xmin,3

◆
= H

�1
{1,3}(x̄�Ah2). (20)

⌃

We now generalize Example 2 to formally solve the optimization problem in (15) for
an arbitrary nT ⇥ nR channel matrix H. To this end, we need some further definitions.
Denote by U the set of all choices of nR columns of H that are linearly independent:

U ,
n
I = {i1, . . . , inR} ✓ {1, . . . , nT} : hi1 , . . . ,hinR

are linearly independent
o
. (21)

For every one of these index sets I 2 U , we denote its complement by

Ic , {1, . . . , nT} \ I; (22)

define the nR ⇥ nR matrix HI containing the columns of H indicated by I:

HI , [hi : i 2 I]; (23)

and define the nR-dimensional parallelepiped

DI , R(HI). (24)

We shall see (Lemma 5 ahead) that R(H) can be partitioned into parallelepipeds that
are shifted versions of {DI} in such a way that, within each parallelepiped, xmin has the
same form, in a sense similar to (17)–(19) in Example 2. To specify our partition, define
the nR-dimensional vector

�I,j , H
�1
I hj , I 2 U , j 2 Ic, (25)

and the sum of its components

aI,j , 1T
nR

�I,j , I 2 U , j 2 Ic. (26)

We next choose a set of coefficients {gI,j}I2U ,j2Ic , which are either 0 or 1, as follows.
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• If

aI,j 6= 1, 8 I 2 U , 8 j 2 Ic, (27)

then let

gI,j ,
(
1 if aI,j > 1,

0 otherwise,
I 2 U , j 2 Ic. (28)

• If (27) is violated, then run Algorithm 3 below to determine {gI,j}.

Algorithm 3.

for j 2 {1, . . . , nT} do

for I 2 U such that I ✓ {j, . . . , nT} do

if j 2 Ic
then

gI,j ,
(
1 if aI,j � 1,

0 otherwise
(29)

else

for k 2 Ic \ {j + 1, . . . , nT} do

gI,k ,

8
><

>:

1 if aI,k > 1 or
�
aI,k = 1 and the first component
of �I,j is negative

�
,

0 otherwise
(30)

end for

end if

end for

end for

Remark 4. The purpose of Algorithm 3 is to break ties when the minimum in (15) is
not unique. Concretely, if (27) is satisfied, then for all x̄ 2 R(H) the input vector that
achieves the minimum in (15) is unique. If there exists some aI,j = 1, then there may
exist multiple equivalent choices. The algorithm simply picks the first one according to
a certain order. M

Finally, let

vI , A

X

j2Ic

gI,jhj , I 2 U . (31)

We are now ready to describe our partition of R(H).

Lemma 5. Let DI , gI,j, and vI be as given in (24), (28) or Algorithm 3, and (31),
respectively.

1. The zonotope R(H) is covered by the parallelepipeds {vI +DI}I2U , which overlap
only on sets of measure zero:

[

I2U

�
vI +DI

�
= R(H) (32)

and

vol
⇣�

vI +DI
�
\
�
vJ +DJ

�⌘
= 0, I 6= J , (33)

where vol(·) denotes the (nR-dimensional) Lebesgue measure.
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2. Fix some I 2 U and some x̄ 2 vI +DI . The vector that induces x̄ with minimum
energy, i.e., xmin in (15), is given by x = (x1, . . . , xnT)

T, where

xi =

(
A · gI,i if i 2 Ic,

�i if i 2 I,
(34)

where the vector � = (�i : i 2 I)T is given by

� , H
�1
I (x̄� vI). (35)

Proof: See Appendix B.

Figure 2 shows the partition of R(H) into the union (32) for two 2⇥ 4 examples.

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

h1

h2

h3

h4

D{1,2}

D{2,3}

D{3,4}

v{1,3}+D{1,3}

v{2,4}+D{2,4}

v{1,4}+D{1,4}

R(H)

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

h1

h2

h3

h4
D{1,2}

D{2,3}

v{3,4}+D{3,4}

v{1,3}+D{1,3}

v{2,4}+D{2,4}

v{1,4}+D{1,4}

R(H)

Figure 2: Partition of R(H) into the union (32) for two 2 ⇥ 4 MIMO examples. The
example on the left is for H = [7, 5, 2, 1; 1, 2, 2.9, 3] and the example on the right for
H = [7, 5, 2, 1; 1, 3, 2.9, 3].

4 Equivalent Capacity Expression
We are now going to state an alternative expression for the capacity CH(A,↵A) in terms
of X̄ instead of X. To that goal we define for each index set I 2 U

sI ,
X

j2Ic

gI,j , I 2 U , (36)

which indicates the number of components of the input vector set to A in order to induce
vI .

Remark 6. It follows directly from Lemma 5 that

0  sI  nT � nR. (37)
M

Proposition 7. The capacity CH(A,↵A) defined in (9) is given by

CH(A,↵A) = max
PX̄

I(X̄;Y) (38)

where the maximization is over all distributions PX̄ over R(H) subject to the power
constraint:

EU

h
AsU +

��H�1
U

�
E[X̄ |U ]� vU

���
1

i
 ↵A, (39)
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where U is a random variable over U such that2

�
U = I

�
=)

�
X̄ 2 (vI +DI)

�
. (40)

Proof: Notice that X̄ is a function of X and that we have a Markov chain X (��
X̄ (�� Y. Therefore, I(X̄;Y) = I(X;Y). Moreover, by Lemma 5, the range of X̄
in R(H) can be decomposed into the shifted parallelepipeds {vI + DI}I2U . Again by
Lemma 5, for any image point x̄ in vI +DI , the minimum energy required to induce x̄
is

AsI +
��H�1

I (x̄� vI)
��
1
. (41)

Without loss in optimality, we restrict ourselves to input vectors x that achieve some x̄
with minimum energy. Then, by the law of total expectation, the average power can be
rewritten as

E
⇥
kXk1

⇤
=
X

I2U
pI E

⇥
kXk1

��U = I
⇤

(42)

=
X

I2U
pI E

h
AsI +

��H�1
I (X̄� vI)

��
1

���U = I
i

(43)

=
X

I2U
pI
⇣
AsI +

��H�1
I
�
E[X̄ |U = I]� vI

���
1

⌘
(44)

= EU

h
AsU +

��H�1
U

�
E[X̄ |U ]� vU

���
1

i
. (45)

Remark 8. The term inside the expectation on the left-hand side (LHS) of (39) can be
seen as a cost function for X̄, where the cost is linear within each of the parallelepipeds
{DI + vI}I2U (but not linear on the entire R(H)). At very high SNR, the receiver
can obtain an almost perfect guess of U . As a result, our channel can be seen as a set
of almost parallel channels in the sense of [22, Exercise 7.28]. Each one of the parallel
channels is an amplitude-constrained nR ⇥ nR MIMO channel, with a linear power
constraint. This observation will help us obtain upper and lower bounds on capacity
that are tight in the high-SNR limit. Specifically, for an upper bound, we reveal U to
the receiver and then apply previous results on full-rank nR ⇥ nR MIMO channels [11].
For a lower bound, we choose the inputs in such a way that, on each parallelepiped
DI + vI , the vector X̄ has the high-SNR-optimal distribution for the corresponding
nR ⇥ nR channel. M

5 Maximum-Variance Signaling
The proofs to the lemmas in this section are given in Appendix C.

As we shall see (Theorem 21 ahead and [15], [23]), at low SNR the asymptotic
capacity is characterized by the maximum trace of the covariance matrix of X̄, which
we denote

KX̄X̄ , E
⇥
(X̄� E[X̄])(X̄� E[X̄])T

⇤
. (46)

In this section we discuss properties of an optimal input distribution for X that maxi-
mizes this trace. Thus, we are interested in the following maximization problem:

max
PX satisfying (6)

tr
�
KX̄X̄

�
(47)

2
The choice of U that satisfies (39) is not unique, but U under different choices are equal with

probability 1.
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where the maximization is over all input distributions PX satisfying the peak- and
average-power constraints given in (6).

The following three lemmas show that the optimal input to the optimization problem
in (47) has certain structures: Lemma 9 shows that it is discrete with all entries taking
values in {0,A}; Lemma 10 shows that the possible values of the optimal X form a “path”
in [0,A]nT starting from the origin; and Lemma 11 shows that, under mild assumptions,
this optimal X takes at most nR + 2 values.

Lemma 9. An optimal input to the maximization problem in (47) uses for each compo-
nent of X only the values 0 and A:

Xi 2 {0,A} with probability 1, i = 1, . . . , nT. (48)

Lemma 10. An optimal input to the optimization problem in (47) is a PMF P ⇤
X over

a set {x⇤
1,x

⇤
2, . . .} satisfying

x⇤
k,`  x⇤

k0,` for all k < k0, ` = 1, . . . , nT. (49)

Furthermore, the first point is x⇤
1 = 0, and

P ⇤
X(0) > 0. (50)

Notice that Lemma 9 and the first part of Lemma 10 have already been proven in
[15]. A proof is given in the appendix for completeness.

Lemma 11. Define T to be the power set of {1, . . . , nT} without the empty set, and
define for every J 2 T and every i 2 {1, . . . , nR}

rJ ,i ,
nTX

k=1

hi,k {k 2 J }, 8J 2 T , 8 i 2 {1, . . . , nR}. (51)

(Here J describes a certain choice of input antennas that will be set to A, while the
remaining antennas will be set to 0.) Number all possible J 2 T from J1 to J2nT�1 and
define the matrix

R ,

0

BBBB@

2rJ1,1 · · · 2rJ1,nR |J1| krJ1k22
2rJ2,1 · · · 2rJ2,nR |J2| krJ2k22

...
. . .

...
...

...
2rJ2nT�1,1 · · · 2rJ2nT�1,nR |J2nT�1| krJ2nT�1

k22

1

CCCCA
(52)

where

rJ ,
�
rJ ,1, rJ ,2, . . . , rJ ,nR

�T
, 8J 2 T . (53)

Assume that every (nR + 2)⇥ (nR + 2) submatrix RnR+2 of matrix R is full-rank

rank(RnR+2) = nR + 2, 8RnR+2. (54)

Then the optimal input to the optimization problem in (47) is a PMF P ⇤
X over a set

{0,x⇤
1, . . . ,x

⇤
nR+1} with nR + 2 points.

Remark 12. Lemmas 5 and 9 together imply that the optimal X̄ in (47) takes value
only in the set FCP of corner points of the parallelepipeds {vI +DI}:

FCP ,
[

I2U

⇢
vI +

X

i2I
�ihi : �i 2 {0,A}, 8 i 2 I

�
. (55)

Lemmas 10 and 11 further imply that the possible values of this optimal X̄ form a path
in FCP, starting from 0, and containing no more than nR + 2 points. M

Table 1 (see next page) illustrates four examples of distributions that maximize the
trace of the covariance matrix in some MIMO channels.
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Table 1: Maximum variance for different channel coefficients

channel gains ↵ max
PX

tr
�
KX̄X̄

�
PX : max

PX

tr
�
KX̄X̄

�

H =

✓
1.3 0.6 1 0.1
2.1 4.5 0.7 0.5

◆
1.5 16.3687A2 PX(0, 0, 0, 0) = 0.625,

PX(A,A,A,A) = 0.375

H =

✓
1.3 0.6 1 0.1
2.1 4.5 0.7 0.5

◆
0.9 12.957A2 PX(0, 0, 0, 0) = 0.7,

PX(A,A,A, 0) = 0.3

H =

✓
1.3 0.6 1 0.1
2.1 4.5 0.7 0.5

◆
0.6 9.9575A2 PX(0, 0, 0, 0) = 0.7438,

PX(A,A, 0, 0) = 0.1687,

PX(A,A,A, 0) = 0.0875

H =

✓
1.3 0.6 1 0.1
2.1 4.5 0.7 0.5

◆
0.3 6.0142A2 PX(0, 0, 0, 0) = 0.85,

PX(A,A, 0, 0) = 0.15

H =

0

@
0.9 3.2 1 2.1
0.5 3.5 1.7 2.5
0.7 1.1 1.1 1.3

1

A 0.9 23.8405A2 PX(0, 0, 0, 0) = 0.7755,

PX(A,A,A,A) = 0.2245

H =

0

@
0.9 3.2 1 2.1
0.5 3.5 1.7 2.5
0.7 1.1 1.1 1.3

1

A 0.75 20.8950A2 PX(0, 0, 0, 0) = 0.7772,

PX(A,A,A, 0) = 0.1413,

PX(A,A,A,A) = 0.0815

H =

0

@
0.9 3.2 1 2.1
0.5 3.5 1.7 2.5
0.7 1.1 1.1 1.3

1

A 0.6 17.7968A2 PX(0, 0, 0, 0) = 0.8,

PX(A,A,A, 0) = 0.2
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6 Capacity Results
Define

VH ,
X

I2U
|det(HI)|, (56)

and let q be a probability vector on U with entries

qI , |detHI |
VH

, I 2 U . (57)

Further, define

↵th , nR

2
+
X

I2U
sI qI , (58)

where {sI} are defined in (36). Notice that ↵th determines the threshold value for ↵
above which X̄ can be made uniform over R(H). In fact, combining the minimum-energy
signaling in (34) with a uniform distribution for X̄ over R(H), the expected input power
is

E[kXk1] =
X

I2U
Pr[U = I] · E[kXk1 |U = I] (59)

=
X

I2U
qI

✓
AsI +

nRA

2

◆
(60)

= ↵thA (61)

where the random variable U indicates the parallelepiped containing X̄; see (40). Equal-
ity (60) holds because, when X̄ is uniform over R(H), Pr[U = I] = qI , and because,
conditional on U = I, using the minimum-energy signaling scheme, the input vector X
is uniform over vI +DI .

Remark 13. Note that

↵th  nT

2
, (62)

as can be argued as follows. Let X be an input that achieves a uniform X̄ with minimum
energy. According to (61) it consumes an input power ↵thA. Define X0 as

X 0
i , A�Xi, i = 1, . . . , nT. (63)

It must consume input power (nT � ↵th)A. Note that X0 also induces a uniform X̄
because the zonotope R(H) is point-symmetric. Since X consumes minimum energy, we
know

E[kXk1]  E[kX0k1], (64)

i.e.,

↵thA  (nT � ↵th)A, (65)

which implies (62). M

6.1 Lower Bounds
The proofs to the theorems in this section can be found in Appendix D.
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Theorem 14. If ↵ � ↵th, then

CH(A,↵A) � 1

2
log

✓
1 +

A
2nRV

2
H

(2⇡e)nR

◆
. (66)

Theorem 15. If ↵ < ↵th, then

CH(A,↵A) � 1

2
log

✓
1 +

A
2nRV

2
H

(2⇡e)nR
e2⌫
◆

(67)

with

⌫ , sup
�2(max{0,nR

2 +↵�↵th},min{nR
2 ,↵})

⇢
nR

✓
1� log

µ

1� e�µ
� µ e�µ

1� e�µ

◆
� inf

p
D(pkq)

�
,

(68)

where µ is the unique solution to the following equation:

1

µ
� e�µ

1� e�µ
=

�

nR
, (69)

and where the infimum is over all probability vectors p on U such that
X

I2U
pIsI = ↵� � (70)

with {sI} defined in (36).

The two lower bounds in Theorems 14 and 15 are derived by applying the EPI, and
by maximizing the differential entropy h(X̄) under constraints (39). When ↵ � ↵th,
choosing X̄ to be uniformly distributed on R(H) satisfies (39), hence we can achieve
h(X̄) = logVH. When ↵ < ↵th, the uniform distribution is no longer an admissible dis-
tribution for X̄. In this case, we first select a PMF over the events {X̄ 2 (vI +DI)}I2U ,
and, given X̄ 2 vI + DI , we choose the inputs {Xi : i 2 I} according to a truncated
exponential distribution rotated by the matrix HI . Interestingly, it is optimal to choose
the truncated exponential distributions for all sets I 2 U to have the same parameter
µ. This parameter is determined by the power �

nR
allocated to the nR signaling inputs

{Xi : i 2 I}.

6.2 Upper Bounds
The proofs to the theorems in this section can be found in Appendix E.

The first upper bound is based on an analysis of the channel with peak-power con-
straint only, i.e., the average-power constraint (6b) is ignored.

Theorem 16. For an arbitrary ↵,

CH(A,↵A)  sup
p

(
logVH �D(pkq) +

X

I2U
pI

nRX

`=1

log

✓
�I,` +

Ap
2⇡e

◆)
, (71)

where �I,` denotes the square root of the `th diagonal entry of the matrix H
�1
I H

�T
I , and

where the supremum is over all probability vectors p on U .

The following two upper bounds in Theorems 17 and 18 hold only when ↵ < ↵th.

Theorem 17. If ↵ < ↵th, then

CH(A,↵A)  sup
p

inf
µ>0

(
logVH �D(pkq) +

X

I2U
pI

nRX

`=1

log

✓
�I,` +

Ap
2⇡e

1� e�µ

µ

◆
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+
µ

A
p
2⇡

X

I2U
pI

nRX

`=1

�I,`

✓
1� e

� A2

2�2
I,`

◆
+ µ

 
↵�

X

I2U
pIsI

!)
,

(72)

where the supremum is over all probability vectors p on U such that
X

I2U
pIsI  ↵. (73)

Theorem 18. If ↵ < ↵th, then

CH(A,↵A)

 sup
p

inf
�,µ>0

(
logVH �D(pkq) +

X

I2U
pI

nRX

`=1

log

 
A · e

µ�
A � e�µ(1+ �

A )

p
2⇡eµ

�
1� 2Q

�
�

�I,`

��
!

+
X

I2U
pI

nRX

`=1

Q
✓

�

�I,`

◆
+
X

I2U
pI

nRX

`=1

�p
2⇡�I,`

e
� �2

2�2
I,`

+
µ

A
p
2⇡

X

I2U
pI

nRX

`=1

�I,`

 
e
� �2

2�2
I,` � e

� (A+�)2

2�2
I,`

!
+ µ

 
↵�

X

I2U
pIsI

!)
, (74)

where Q(·) denotes the Q-function associated with the standard normal distribution, and
the supremum is over all probability vectors p on U satisfying (73).

The three upper bounds in Theorems 16, 17 and 18 are derived using the fact that
capacity cannot be larger than over a channel where the receiver observes both Y and
U . The mutual information corresponding to this channel I(X̄;Y, U) decomposes as
H(U)+I(X̄;Y|U), where the term H(U) indicates the rate that can be achieved by coding
over the choice of the parallelepiped to which X̄ belongs, and I(X̄;Y|U) indicates the
average rate that can be achieved by coding over a single parallelepiped. By the results
in Lemma 5, we can treat the channel matrix as an invertible matrix when knowing
U , which greatly simplifies the bounding on I(X̄;Y|U). The upper bounds are then
obtained by optimizing over the probabilities assigned to the different parallelepipeds.
As we will see later, the upper bounds are asymptotically tight at high SNR. The reason
is that the additional term I(X̄;Y, U) � I(X̄;Y) = I(X̄;U |Y) vanishes as the SNR
grows large. To derive the asymptotic high-SNR capacity, we also use previous results
in [11], which derived the high-SNR capacity of this channel when the channel matrix
is invertible.

Our next upper bound in Theorem 19 is determined by the maximum trace of the
covariance matrix of X̄ under constraints (6).

Theorem 19. For an arbitrary ↵,

CH(A,↵A)  nR

2
log

✓
1 +

1

nR
max
PX

tr
�
KX̄X̄

�◆
, (75)

where the maximization is over all input distributions PX satisfying the power constraints
(6).

Note that Section 5 provides results that considerably simplify the maximization in
(75). In particular, there exists a maximizing PX that is a probability mass function
over 0 and at most nR + 1 other points on FCP, where FCP is defined in (55).

6.3 Asymptotic Capacity Expressions
The proofs to the theorems in this section can be found in Appendix F.
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Theorem 20 (High-SNR Asymptotics). If ↵ � ↵th, then

lim
A!1

�
CH(A,↵A)� nR logA

 
=

1

2
log

✓
V
2
H

(2⇡e)nR

◆
. (76)

If ↵ < ↵th, then

lim
A!1

�
CH(A,↵A)� nR logA

 
=

1

2
log

✓
V
2
H

(2⇡e)nR

◆
+ ⌫, (77)

where ⌫ < 0 is defined in (68)–(70).

Recall that ↵th is a threshold that determines whether X̄ can be uniformly distributed
over R(H) or not. When ↵ < ↵th, compared with the asymptotic capacity without
active average-power constraint, the average-power constraint imposes a penalty on the
channel capacity. This penalty is characterized by ⌫ in (77). As shown in Figure 3, ⌫ is
a increasing function of ↵. When ↵ < ↵th, ⌫ is always negative, and increases to 0 when
↵ � ↵th.

↵

⌫
[n

at
s]

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
�14

�13

�12

�11

�10

�9

�8

�7

�6

�5

�4

�3

�2

�1

0

Figure 3: The parameter ⌫ in (68) as a function of ↵, for a 2 ⇥ 3 MIMO channel with
channel matrix H = [1, 1.5, 3; 2, 2, 1] with corresponding ↵th = 1.4762. Recall that ⌫ is
the asymptotic capacity gap to the case with no active average-power constraint.

Theorem 21 (Low-SNR Asymptotics). For an arbitrary ↵,

lim
A#0

CH(A,↵A)

A
2 =

1

2
max
PX

tr
�
KX̄X̄

�
, (78)

where the maximization is over all input distributions PX satisfying the power constraints

Pr
⇥
Xk > 1

⇤
= 0, 8 k 2 {1, . . . , nT}, (79a)

E
⇥
kXk1

⇤
 ↵. (79b)

Again, see the results in Section 5 about maximizing the trace of the covariance
matrix KX̄X̄.

Example 22. Figure 4 plots the asymptotic slope, i.e., the right-hand side (RHS) of
(78), as a function of ↵ for a 2⇥ 3 MIMO channel. As we can see, the asymptotic slope
is strictly increasing for all values of ↵ < nT

2 . ⌃
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Figure 4: Low-SNR slope as a function of ↵, for a 2 ⇥ 3 MIMO channel with channel
matrix H = [1, 1.5, 3; 2, 2, 1].

6.4 Numerical Results
In the following we present some numerical examples of our lower and upper bounds.

Example 23. Figures 5 and 6 depict the derived lower and upper bounds for a 2 ⇥ 3
MIMO channel (same channel as in Example 22) for ↵ = 0.9 and ↵ = 0.3 (both values
are less than ↵th = 1.4762), respectively. Both upper bounds (72) and (74) match with
lower bound (67) asymptotically as A tends to infinity. Moreover, upper bound (71)
gives a good approximation on capacity when the average-power constraint is weak (i.e.,
when ↵ is close to ↵th). Indeed, (71) is asymptotically tight at high SNR when ↵ � ↵th.
We also plot three numerical lower bounds by optimizing I(X̄;Y) over all feasible choices
of X̄ that have positive probability on two, three, or four distinct mass points. (One
of the mass points is always at 0.) In the low-SNR regime, upper bound (75) matches
well with the two-point numerical lower bound. Actually (75) shares the same slope
with capacity when the SNR tends to zero, which can be seen by comparing (75) with
Theorem 21. ⌃

Example 24. Figures 7 and 8 show similar trends in a 2⇥4 MIMO channel. Note that
although in the 2⇥ 3 channel of Figures 5 and 6 the upper bound (72) is always tighter
than (74), this does not hold in general, as can be seen in Figure 8. ⌃

7 Concluding Remarks
In this paper, we first express capacity as a maximization problem over distributions for
the vector X̄ = HX. The main challenge there is to transform the total average-power
constraint on X to a constraint on X̄, as the mapping from x to x̄ is many-to-one.
This problem is solved by identifying, for each x̄, the input vector xmin that induces
this x̄ with minimum energy. Specifically, we show that the set R(H) of all possible
x̄ can be decomposed into a number of parallelepipeds such that, for all x̄ within one
parallelepiped, the minimum-energy input vectors xmin have a similar form.

At high SNR, the above minimum-energy signaling result allows the transmitter to
decompose the channel into several “almost parallel” channels, each of which being an
nR ⇥ nR MIMO channel in itself. This is because, at high SNR, the output y allows
the receiver to obtain a good estimate of which of the parallelepipeds x̄ lies in. We can
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Figure 5: Bounds on capacity of 2 ⇥ 3 MIMO channel with channel matrix H =
[1, 1.5, 3; 2, 2, 1], and average-to-peak power ratio ↵ = 0.9. Note that the threshold
of the channel is ↵th = 1.4762.
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Figure 6: Bounds on capacity of the same 2⇥3 MIMO channel as discussed in Figure 5,
and average-to-peak power ratio ↵ = 0.3.
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Figure 7: Bounds on capacity of 2 ⇥ 4 MIMO channel with channel matrix H =
[1.5, 1, 0.75, 0.5; 0.5, 0.75, 1, 1.5], and average-to-peak power ratio ↵ = 1.2. Note that
the threshold of the channel is ↵th = 1.947.
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Figure 8: Bounds on capacity of the same 2⇥4 MIMO channel as discussed in Figure 7,
and average-to-peak power ratio ↵ = 0.6.
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then apply previous results on the capacity of the MIMO channel with full column rank.
The remaining steps in deriving our results on the high-SNR asymptotic capacity can be
understood, on a high level, as optimizing probabilities and energy constraints assigned
to each of the parallel channels.

In the low-SNR regime, the capacity slope is shown to be proportional to the trace
of the covariance matrix of X̄ under the given power constraints. We prove several
properties of the input distribution that maximizes this trace. For example, each entry
in X should be either zero or the maximum value A, and the total number of values of
X with nonzero probabilities need not exceed nR + 2.

Acknowledgment
The authors thank Saïd Ladjal for pointing them to the notion of zonotopes and related
literature.

A Proof of Proposition 1
Fix a capacity-achieving input X and let

↵⇤ , E
⇥
kXk1

⇤
A

�1. (80)

Define a , (A,A, . . . ,A)T and

X0 , a�X. (81)

We have

E
⇥
kX0k1

⇤
= A(nT � ↵⇤) (82)

and

I(X;Y) = I(X;Ha�Y) (83)
= I(X;Ha� HX� Z) (84)
= I(a�X;H(a�X)� Z) (85)
= I(a�X;H(a�X) + Z) (86)
= I(X0;HX0 + Z) (87)
= I(X0;Y0) (88)

where Y0 , HX0 + Z, and where (86) follows because Z is symmetric around 0 and
independent of X.

Define another random vector X̃ as follows:

X̃ ,
(
X with probability p,

X0 with probability 1� p.
(89)

Notice that, since I(X;Y) is concave in PX for a fixed channel law, we have

I(X̃; Ỹ) � p I(X;Y) + (1� p) I(X0;Y0). (90)

Therefore, by (88),

I(X̃; Ỹ) � I(X;Y) (91)

for all p 2 [0, 1]. Combined with the assumption that X achieves capacity, (91) implies
that X̃ must also achieve capacity.
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We are now ready to prove the two claims in the proposition. We first prove that for
↵ > nT

2 the average-power constraint is inactive. To this end, we choose p = 1
2 , which

yields

E
⇥
kX̃k1

⇤
=

nT

2
A. (92)

Since X̃ achieves capacity (see above), we conclude that capacity is unchanged if one
strengthens the average-power constraint from ↵A to nT

2 A.
We now prove that, if ↵  nT

2 , then there exists a capacity-achieving input distribu-
tion for which the average-power constraint is met with equality. Assume that ↵⇤ < ↵
(otherwise X is itself such an input), then choose

p =
nT � ↵⇤ � ↵

nT � 2↵⇤ . (93)

With this choice,

E
⇥
kX̃k1

⇤
= pE

⇥
kXk1

⇤
+ (1� p)E

⇥
kX0k1

⇤
(94)

=
�
p↵⇤ + (1� p)(nT � ↵⇤)

�
A (95)

= ↵A. (96)

Hence X̃ (which achieves capacity) meets the average-power constraint with equality.

B Proof of Lemma 5
We first restrict ourselves to the case where the condition in (27) is satisfied. The
implications caused if (27) is violated are discussed at the end.

We start with Part 2. The minimization problem under consideration,

min
x02S(x̄)

kx0k1, (97)

is over a compact set and the objective function is continuous, so a minimum must exist.
We are now going to prove that in fact the minimum is unique and is achieved by the
input vector x defined in (34). To that goal, we first link the components �i in (34) with
the components of some arbitrary input vector x0 2 S(x̄), x0 6= x, and then use this to
show that x0 consumes more energy than x.

In the following, Ii denotes the ith entry in I for i 2 {1, . . . , nR}. Thus, we can
restate (25) as

hj = HI�I,j =
nRX

i=1

�(i)
I,j hIi , 8 j 2 Ic, (98)

where �(i)
I,j , i = 1, . . . , nR, denote the components of �I,j .

So, we choose an arbitrary x0 , (x0
1, . . . , x

0
nT

)T 2 S(x̄) and notice that

x̄ = Hx0 (99)

=
nTX

j=1

x0
jhj (100)

=
X

j2I
x0
jhj +

X

j2Ic:
aI,j<1

x0
jhj +

X

j2Ic:
aI,j>1

x0
jhj (101)

=
X

j2I
x0
jhj +

X

j2Ic:
aI,j<1

x0
jhj +

X

j2Ic:
aI,j>1

Ahj �
X

j2Ic:
aI,j>1

�
A� x0

j

�
hj (102)
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=
nRX

i=1

x0
Ii
hIi +

X

j2Ic:
aI,j<1

x0
j

nRX

i=1

�(i)
I,j hIi +

X

j2Ic:
aI,j>1

Ahj �
X

j2Ic:
aI,j>1

�
A� x0

j

� nRX

i=1

�(i)
I,j hIi (103)

=
nRX

i=1

0

BB@x0
Ii

+
X

j2Ic:
aI,j<1

�(i)
I,j x

0
j �

X

j2Ic:
aI,j>1

�(i)
I,j
�
A� x0

j

�

1

CCAhIi +
X

j2Ic:
aI,j>1

Ahj (104)

=
nRX

i=1

0

BB@x0
Ii

+
X

j2Ic:
aI,j<1

�(i)
I,j x

0
j �

X

j2Ic:
aI,j>1

�(i)
I,j
�
A� x0

j

�

1

CCAhIi + vI , (105)

where in (103) we used (98) and where the last equality follows from (28) and (31).
Since {hi : i 2 I} are linearly independent, they must span RnR , and hence the

coefficients
8
>><

>>:
x0
Ii

+
X

j2Ic:
aI,j<1

�(i)
I,j x

0
j �

X

j2Ic:
aI,j>1

�(i)
I,j (A� x0

j)

9
>>=

>>;
i2{1,...,nR}

(106)

uniquely determine x̄ � vI . Thus it follows from (35) that (106) must be equal to
{�i}i2{1,...,nR}, i.e. by (34), to {xIi}i2{1,...,nR}.

Next we argue that, if x0 6= x, then

kxk1 < kx0k1. (107)

To that goal notice that, because the components of x are nonnegative,

kxk1 =
nTX

j=1

xj (108)

=
X

i2Ic:
aI,i>1

xi +
X

i2Ic:
aI,i<1

xi +
nRX

i=1

xIi (109)

=
X

i2Ic:
aI,i>1

A+
X

i2Ic:
aI,i<1

0 +
nRX

i=1

0

BB@x0
Ii

+
X

j2Ic:
aI,j<1

�(i)
I,j x

0
j �

X

j2Ic:
aI,j>1

�(i)
I,j
�
A� x0

j

�

1

CCA (110)

=
X

j2Ic:
aI,j>1

A+
nRX

i=1

x0
Ii

+
X

j2Ic:
aI,j<1

nRX

i=1

�(i)
I,j x

0
j �

X

j2Ic:
aI,j>1

nRX

i=1

�(i)
I,j
�
A� x0

j

�
(111)

=
X

j2Ic:
aI,j>1

A+
X

j2I
x0
j +

X

j2Ic:
aI,j<1

aI,j|{z}
<1

x0
j �

X

j2Ic:
aI,j>1

aI,j|{z}
>1

�
A� x0

j

�
(112)

<
X

j2Ic:
aI,j>1

A+
X

j2I
x0
j +

X

j2Ic:
aI,j<1

x0
j �

X

j2Ic:
aI,j>1

(A� x0
j) (113)

=
nTX

j=1

x0
j = kx0k1. (114)

Here (110) follows from (28) and because {xIi} are identical to (106); (112) follows from
(26); and (113) holds because, since x0 6= x, there must exist some j 2 Ic, aI,j < 1,
such that x0

j > 0, or some j 2 Ic, aI,j > 1, such that x0
j < A. This completes the proof

of Part 2.
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We now prove Part 1. Fix I,J 2 U with I 6= J , and a point x̄ in the interior of
(vI + DI). We argue by contradiction that x̄ cannot be in (vJ + DJ ). To this end,
choose an index i 2 {1, . . . , nT} such that the channel vector hi is in HI but not in
HJ . Since I 6= J , such an index must exist. By definition of � in (35), any x that is
a solution to the minimization in (97) has xi lying in the open interval (0,A). If x̄ is
also in (vJ +DJ ), then xi must be 0 or A since i 2 J c. Since we have shown that the
solution to the minimization in (97) is unique, we have arrived at a contradiction. Thus,
no point can be in the interior of both (vI + DI) and (vJ + DJ ), and therefore their
intersection has Lebesgue measure zero.

Furthermore, clearly,
[

I2U
(vI +DI) ✓ R(H). (115)

Since the intersection of vI +DI and vJ +DJ has Lebesgue measure zero, the reverse
direction follows immediately by noting that both sets are closed and

vol
�
R(H)

�
=
X

I2U
vol(vI +DI). (116)

This latter equality holds because

vol(vI +DI) = A
nR |detHI | (117)

and by [24], [25]

vol
�
R(H)

�
= A

nR
X

I2U
|detHI |. (118)

This completes the proof of Part 1.
Finally, we argue that the lemma holds also when (27) is violated. Note that when

aI,j = 1 for some I and j, then the solution to (97) is not necessarily unique anymore.
To circumvent this problem, note that Algorithm 3 can be interpreted as generating a
small perturbation of the matrix H. We fix some small values ✏1 > · · · > ✏nT > 0 and
check through all aI,j , j 2 {1, . . . , nT}. When we encounter a first tie aI,j = 1, we
multiply the corresponding vector hj by a factor (1 + ✏1) and thereby break the tie (✏1
is chosen to be small enough so that it does not affect any other choices). If a second tie
shows up, we use the next perturbation factor (1 + ✏2) (which is smaller than (1 + ✏1),
so we do not inadvertently revert our first perturbation); and so on. The lemma is then
proven with a continuity argument by letting all of ✏1, . . . , ✏nT go to zero. We omit the
details.

C Proof of Maximum-Variance Signaling Results

C.1 Proof of Lemma 9
The ith diagonal element of KX̄X̄ can be decomposed as follows:

(KX̄X̄)i,i = E
h�
X̄i � E[X̄i]

�2i (119)

= E

2

4
 

nTX

k=1

hi,k

�
Xk � E[Xk]

�
!2
3

5 (120)

=
nTX

k=1

h2
i,k E

h�
Xk � E[Xk]

�2i
+

nTX

k=1

nTX

`=1
` 6=k

hi,khi,`

�
E[XkX`]� E[Xk]E[X`]

�
. (121)
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Thus, the objective function in (47) is
nRX

i=1

nTX

k=1

h2
i,k E

h�
Xk � E[Xk]

�2i
+

nRX

i=1

nTX

k=1

nTX

`=1
` 6=k

hi,khi,`

�
E[XkX`]� E[Xk]E[X`]

�
. (122)

If we fix a joint distribution on (X1, . . . , XnT�1) and choose with probability 1 a con-
ditional mean E[XnT |X1, . . . , XnT�1], then the consumed total average input power is
fixed and every summand on the RHS of (122) is determined except for

E
h�
XnT � E[XnT ]

�2i
. (123)

This value is maximized—for any choice of joint distribution on (X1, . . . , XnT�1) and
conditional mean E[XnT |X1, . . . , XnT�1]—if XnT takes value only in the set {0,A}. We
conclude that, to maximize the expression in (47) subject to a constraint on the average
input power, it is optimal to restrict XnT to taking value only in {0,A}.

Repeating this argument for XnT�1, XnT�2, etc., we conclude that every Xk, k =
1, . . . , nT, should take value only in {0,A}.

C.2 Proof of Lemma 10
Some steps in our proof are inspired by [15]. We start by rewriting the objective function
in (47) as:

tr
�
KX̄X̄

�
=

nRX

i=1

E
h�
X̄i � E[X̄i]

�2i (124)

=
nRX

i=1

E

2

4
 

nTX

k=1

hi,k

�
Xk � E[Xk]

�
!2
3

5 (125)

=
nRX

i=1

nTX

k=1

nTX

k0=1

hi,k hi,k0 E
⇥�
Xk � E[Xk]

��
Xk0 � E[Xk0 ]

�⇤
(126)

=
nTX

k=1

nTX

k0=1

nRX

i=1

hi,k hi,k0

| {z }
,k,k0

· Cov[Xk, Xk0 ] (127)

=
nTX

k=1

nTX

k0=1

k,k0 Cov[Xk, Xk0 ]. (128)

Thus, we need to maximize Cov[Xk, Xk0 ]. Assume that we have fixed the average power
Ek, k = 1, . . . , nT, assigned to each input antenna, and further assume that we reorder
the antennas such that

E1 � · · · � EnT . (129)

Note that since each antenna only uses a binary input Xk 2 {0,A}, the assignment
E[Xk] = Ek determines the probabilities:

Pr[Xk = A] =
Ek

A
(130)

and the variances:

Cov[Xk, Xk] = Var[Xk] = E
⇥
X2

k

⇤
� E

2
k = EkA� E

2
k. (131)

For the covariances with k < k0 we obtain

Cov[Xk, Xk0 ] = E[XkXk0 ]� EkEk0 (132)
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= A
2 Pr[Xk = Xk0 = A]� EkEk0 (133)

= A
2 Pr[Xk0 = A] Pr[Xk = A |Xk0 = A]| {z }

1

� EkEk0 (134)

 AEk0 � EkEk0 (135)
=
�
A� Ek

�
Ek0 . (136)

The upper bound holds with equality if

Pr[Xk = A |Xk0 = A] = 1. (137)

This choice is allowed, because for k < k0 the ordering (129) is compatible with Con-
dition (137). This proves that the mass points can be ordered in such a way that (49)
holds.

We next prove by contradiction that the first mass point must be 0. By Lemma 9,
if x⇤

1 6= 0, then x⇤
1 must contain at least one entry that equals A. By (49), that entry

must be A for all mass points used by the optimal input. Clearly, changing its value
from A to 0 for all mass points will not affect the trace of (46), but will reduce the total
input power. Hence we conclude that an input with x⇤

1 6= 0 (or with zero probability on
0) must be suboptimal.

C.3 Proof of Lemma 11
We investigate the Karush-Kuhn-Tucker (KKT) conditions of the optimization problem
(47). Using the definition of T and rJ ,i we rewrite the objective function of (47) as

tr
�
KX̄X̄

�
=

nRX

i=1

⇣
E
⇥
X̄2

i

⇤
�
�
E[X̄i]

�2⌘ (138)

= A
2

nRX

i=1

0

@
X

J2T
pJ r2J ,i �

 
X

J2T
pJ rJ ,i

!2
1

A. (139)

Taking into account the constraints (6), the Lagrangian is obtained as:

L(p, µ0, µ1,µ) = A
2

nRX

i=1

0

@
X

J2T
pJ r2J ,i �

 
X

J2T
pJ rJ ,i

!2
1

A� µ0

 
X

J2T
pJ � 1

!

� µ1

 
X

J2T
pJ |J |� ↵

!
�
X

J2T
µJ (0� pJ ). (140)

The KKT conditions for the optimal PMF {p⇤K}K2U are as follows:

A
2

nRX

i=1

 
r2K,i � 2rK,i

X

J2T
p⇤J rJ ,i

!
� µ0 � µ1|K|+ µK = 0, K 2 T , (141a)

µ0

 
X

J2T
p⇤J � 1

!
= 0, (141b)

µ1

 
X

J2T
p⇤J |J |� ↵

!
= 0, (141c)

µKp
⇤
K = 0, K 2 T , (141d)
µ0 � 0, (141e)
µ1 � 0, (141f)
µK � 0, K 2 T , (141g)
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X

J2T
p⇤J  1, (141h)

X

J2T
p⇤J |J |  ↵, (141i)

p⇤K � 0, K 2 T . (141j)

We define the vector m = (m1, . . . ,mnR) with components

mi ,
X

J2T
p⇤J rJ ,i, i = 1, . . . , nR, (142)

and rewrite (141a) as

A
2krKk22 � 2A2rT

Km� µ0 � µ1|K|+ µK = 0, K 2 T . (143)

Since by Lemma 10 P ⇤
X(0) > 0, it must hold that (141h) holds with strict inequality

and it thus follows from (141b) that µ0 = 0.
Next, assume by contradiction that there exist nR + 2 choices K1, . . . ,KnR+2 2 T

with positive probability p⇤K`
> 0. Then, by (141d), µK` = 0 for all ` 2 {1, . . . , nR + 2}.

From (143) we thus have

2rT
K`

m+ µ̃1|K`| = krK`k22, ` 2 {1, . . . , nR + 2}, (144)

with µ̃1 , µ1/A
2, which can be written in matrix form:

0

BBBB@

2rK1,1 · · · 2rK1,nR |K1|
2rK2,1 · · · 2rK2,nR |K2|

...
. . .

...
...

2rKnR+2,1 · · · 2rKnR+2,nR |KnR+2|

1

CCCCA

0

BBBBB@

m1

m2
...

mnR

µ̃1

1

CCCCCA
=

0

BBB@

krK1k22
krK2k22

...
krKnR+2k22

1

CCCA
. (145)

This is an over-determined system of linear equations in nR+1 variables m1, . . . ,mnR , µ̃1,
which has a solution if, and only if,

rank

0

BBB@

2rK1,1 · · · 2rK1,nR |K1|
2rK2,1 · · · 2rK2,nR |K2|

...
. . .

...
...

2rKnR+2,1 · · · 2rKnR+2,nR |KnR+2|

1

CCCA

= rank

0

BBB@

2rK1,1 · · · 2rK1,nR |K1| krK1k22
2rK2,1 · · · 2rK2,nR |K2| krK2k22

...
. . .

...
...

...
2rKnR+2,1 · · · 2rKnR+2,nR |KnR+2| krKnR+2k22

1

CCCA
. (146)

However, since the matrix on the LHS has only nR +1 columns, its rank can be at most
nR + 1. The matrix on the RHS, on the other hand, has by assumption (see (54)) rank
nR + 2. This is a contradiction. We have proven that there exist at most nR + 1 values
pK with positive values. Together with 0, there are at most nR +2 mass points in total.

D Derivation of the Lower Bounds
For any choice of the random vector X̄ over R(H), the following holds:

CH(A,↵A) � I(X̄; X̄+ Z) (147)
= h(X̄+ Z)� h(Z) (148)
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� 1

2
log
⇣
e2h(X̄) + e2h(Z)

⌘
� h(Z) (149)

=
1

2
log

 
1 +

e2h(X̄)

(2⇡e)nR

!
, (150)

where (149) follows from the EPI [22].

D.1 Proof of Theorem 14
We choose X̄ to be uniformly distributed over R(H). To verify that this uniform distri-
bution satisfies the average-power constraint (39), we define

pI , Pr[U = I] (151)

and derive

EU

⇥
AsU +

��H�1
U

�
E
⇥
X̄
��U
⇤
� vU

���
1

⇤

= A

X

I2U
pI sI +

X

I2U
pI
��H�1

I
�
E[X̄ |U = I]� vI

���
1

(152)

= A

X

I2U
qI sI +

X

I2U
qI · nRA

2
(153)

= ↵thA (154)
 ↵A. (155)

Here, (153) follows because when X̄ is uniformly distributed in R(H), we have

H
�1
I
�
E[X̄ |U = I]� vI

�
=

A

2
· 1nR (156)

and

pI = qI , I 2 U . (157)

Further, (154) holds because of (58), and the last inequality (155) holds by the assump-
tion in the theorem.

The uniform distribution of X̄ results in

h(X̄) = log(AnR · VH), (158)

which, by (150), leads to (66).

D.2 Proof of Theorem 15
We choose

� 2
⇣
max

n
0,

nR

2
+ ↵� ↵th

o
,min

nnR

2
,↵
o⌘

, (159)

a probability vector p satisfying (70), and µ as the unique solution to (69).
Note that such choices are always possible as can be argued as follows. From (159) one

directly sees that 0 < � < nR
2 . Thus, 0 < �

nR
< 1

2 , which corresponds exactly to the range
where (69) has a unique solution. From (159) it also follows that nR

2 + ↵� ↵th < � < ↵
and thus

0 < ↵� � < ↵th � nR

2
 nT

2
� nR

2
, (160)

where the inequality follows from (62). So the RHS of (70) takes value within the interval�
0, nT�nR

2

�
. By Remark 6, the LHS of (70) can take value in the interval [0, nT � nR],
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which covers the range of the RHS. The existence of p satisfying (70) now follows from
the continuity of the LHS of (70) in p.

For each I we now pick the probability density function (PDF) fX̄|U=I to be the
nR-dimensional product truncated exponential distribution rotated by the matrix HI :

fX̄|U=I(x̄) =
1

A
nR |detHI |

·
✓

µ

1� e�µ

◆nR

e
�µkH�1

I (x̄�vI)k1
A . (161)

Note that this corresponds to the entropy-maximizing distribution under a total average-
power constraint. The average-power constraint (39) is satisfied because

EU

⇥
AsU +

��H�1
U

�
E
⇥
X̄
��U
⇤
� vU

���
1

⇤

=
X

I2U
pI
⇣
AsI +

��H�1
I
�
E[X̄ |U = I]� vI

���
1

⌘
(162)

=
X

I2U
pI

✓
AsI + nRA

✓
1

µ
� e�µ

1� e�µ

◆◆
(163)

=
X

I2U
pI
�
AsI +A�

�
(164)

= A

X

I2U
pIsI +A� (165)

= A(↵� �) +A� (166)
= ↵A. (167)

Here, (163) follows from the expected value of the truncated exponential distribution;
(164) is due to (69); and (166) follows from (70).

Furthermore,

h(X̄) = I(X̄;U) + h(X̄|U) (168)
= H(U) + h(X̄|U) (169)
= H(p) +

X

I2U
pI h(X̄|U = I) (170)

= H(p) +
X

I2U
pI log|detHI |+ nR logA� nR log

µ

1� e�µ

+ nR

✓
1� µ e�µ

1� e�µ

◆
(171)

= �
X

I2U
pI log pI +

X

I2U
pI log

|detHI |
VH

+ logVH + nR logA

+ nR

✓
1� log

µ

1� e�µ
� µ e�µ

1� e�µ

◆
(172)

= �D(pkq) + logVH + nR logA+ nR

✓
1� log

µ

1� e�µ
� µ e�µ

1� e�µ

◆
. (173)

Here, (169) holds because H(U |X̄) = 0; (171) follows from the differential entropy of
a truncated exponential distribution; and in (173) we used the definition of q in (57).
Then, (67) follows by plugging (173) into (150).

E Derivation of Upper Bounds
Let X̄? be a maximizer in (38) and let U? be defined by X̄? as in (40). Then,

CH(A,↵A) = I
�
X̄?; X̄? + Z

�
(174)

 I
�
X̄?; X̄? + Z, U?

�
(175)
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 H(U?) + I
�
X̄?; X̄? + Z

��U?
�
. (176)

For each set I 2 U , we have

I
�
X̄?; X̄? + Z

��U? = I
�
= I
�
X̄? � vI ; (X̄

? � vI) + Z
��U? = I

�
(177)

= I
�
H

�1
I (X̄? � vI);H

�1
I (X̄? � vI) + H

�1
I Z

��U? = I
�

(178)
= I(XI ;XI + ZI |U? = I) (179)

where we have defined

ZI , H
�1
I Z, (180)

XI , H
�1
I (X? � vI). (181)

It should be noted that

ZI ⇠ N
�
0,H�1

I H
�T
I
�
. (182)

Moreover, XI is subject to the following peak- and average-power constraints:

Pr
⇥
X̄I,` > A

⇤
= 0, 8 ` 2 {1, . . . , nR}, (183a)

E
⇥
kXIk1

⇤
= EI , (183b)

where the set {EI : I 2 U} satisfies
X

I2U
pI(sIA+ EI)  ↵A. (184)

To further bound the RHS of (179), we use the duality-based upper-bounding tech-
nique using a product output distribution

RI(yI) =
nRY

`=1

RI,`(yI,`). (185)

Denoting by WI(·|XI) the transition law of the nR ⇥nR MIMO channel with input XI
and output YI , XI + ZI , and by WI,`(·|X̄I,`) the marginal transition law of its `th
component, we have:

I(XI ;XI + ZI |U? = I)
 EXI |U?=I

⇥
D
�
WI(·|XI)

��RI(·)
�⇤

(186)

= �h
�
XI + ZI

��XI , U
? = I

�
� EXI |U?=I

"
nRX

`=1

EWI(YI |XI)[logRI,`(YI,`)]

#
(187)

= �nR

2
log 2⇡e+ log|detHI |�

nRX

`=1

EX̄I,`|U?=I

h
EWI,`(YI,`|X̄I,`)[logRI,`(YI,`)]

i
, (188)

where the last equality holds because

h(XI + ZI |XI , U
? = I) = h(ZI) =

1

2
log
�
(2⇡e)nR detH�1

I H
�T
I
�
. (189)

We finally combine (176) with (179) and (188) to obtain

CH(A,↵A)  H(p⇤)�
nRX

`=1

X

I2U
p⇤I EX̄I,`|U?=I

h
EWI,`(YI,`|X̄I,`)[logRI,`(YI,`)]

i

+
X

I2U
p⇤I log|detHI |�

nR

2
log 2⇡e, (190)

where p⇤ denotes the probability vector of U?. The bounds in Section 6.2 are then found
by picking appropriate choices for the distribution on the output alphabet RI,`(·). We
elaborate on this in the following.
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E.1 Proof of Theorem 16
Inspired by [6] and [7], we choose

RI,`(y) =

8
>>>><

>>>>:

�p
2⇡�I,`

· e
� y2

2�2
I,` if y 2 (�1, 0),

(1� �) · 1
A if y 2 [0,A],

�p
2⇡�I,`

· e
� (y�A)2

2�2
I,` if y 2 (A,1),

(191)

where � 2 (0, 1) will be specified later. Recall that �I,` is the square root of the `th
diagonal entry of the matrix H

�1
I H

�T
I , i.e.,

�I,` =
q
Var[ZI,`]. (192)

We notice that

�
Z 0

�1
WI,`(y|x) logRI,`(y) dy

= �
Z 0

�1

1p
2⇡�I,`

e
� (y�x)2

2�2
I,`

 
log

�p
2⇡�I,`

� y2

2�2
I,`

!
dy (193)

= � log

 
�p

2⇡�I,`

!
Q
✓

x

�I,`

◆
+

1

2
Q
✓

x

�I,`

◆

+
1

2

✓
x

�I,`

◆2

Q
✓

x

�I,`

◆
� x

2�I,`
�

✓
x

�I,`

◆
(194)

 �
 
log

�p
2⇡�I,`

� 1

2

!
Q
✓

x

�I,`

◆
(195)

= � log
�p

2⇡e�I,`
· Q
✓

x

�I,`

◆
, (196)

where

�(x) , 1p
2⇡

e�
x2

2 , (197)

and where (195) holds because of [26, Prop. A.8]

⇠Q(⇠)  �(⇠), ⇠ � 0. (198)

Similarly,

�
Z 1

A

WI,`(y|x) logRI,`(y) dy  � log
�p

2⇡e�I,`
· Q
✓
A� x

�I,`

◆
. (199)

Moreover, we have

�
Z A

0
WI,`(y|x) logRI,`(y) dy = �

Z A

0

1p
2⇡�I,`

e
� (y�x)2

2�2
I,` log

(1� �)

A
dy (200)

= log

✓
A

1� �

◆
·
✓
1�Q

✓
x

�I,`

◆
�Q

✓
A� x

�I,`

◆◆
. (201)

We choose

� =

p
2⇡e�I,`

A+
p
2⇡e�I,`

(202)
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and obtain from (196), (199), and (201)

�EWI,`(YI,`|X̄I,`)[logRI,`(YI,`)]  log
�
A+

p
2⇡e�I,`

�
. (203)

Substituting (203) into (190) then yields

CH(A,↵A)  sup
p

(
H(p)� nR

2
log 2⇡e+

X

I2U
pI log|detHI |

+
X

I2U
pI

nRX

`=1

log
⇣
A+

p
2⇡e�I,`

⌘)
(204)

= sup
p

(
H(p) +

X

I2U
pI log

|detHI |
VH

+ logVH

+
X

I2U
pI

nRX

`=1

log

✓
�I,` +

Ap
2⇡e

◆)
(205)

= sup
p

(
logVH �D(pkq) +

X

I2U
pI

nRX

`=1

log

✓
�I,` +

Ap
2⇡e

◆)
. (206)

E.2 Proof of Theorem 17
We choose

RI,`(y) =

8
>>>>><

>>>>>:

�p
2⇡�I,`

e
� y2

2�2
I,` if y 2 (�1, 0),

1��
A · µ

1�e�µ e�
µy
A if y 2 [0,A],

�p
2⇡�I,`

e
� (y�A)2

2�2
I,` if y 2 (A,1),

(207)

where � 2 (0, 1) and µ > 0 will be specified later.
We notice that the inequalities in (196) and (199) still hold, while

�
Z A

0
WI,`(y|x) logRI,`(y) dy

= �
Z A

0

1p
2⇡�I,`

e
� (y�x)2

2�2
I,`

✓
log

1� �

A

µ

1� e�µ
� µ

A
y

◆
dy (208)

= � log

✓
1� �

A

µ

1� e�µ

◆✓
1�Q

✓
x

�I,`

◆
�Q

✓
A� x

�I,`

◆◆

+
µ�I,`
A

✓
�

✓
x

�I,`

◆
� �

✓
A� x

�I,`

◆◆
+

µ

A
x

✓
1�Q

✓
x

�I,`

◆
�Q

✓
A� x

�I,`

◆◆
(209)

 � log

✓
1� �

A

µ

1� e�µ

◆✓
1�Q

✓
x

�I,`

◆
�Q

✓
A� x

�I,`

◆◆

+
µ�I,`
A

✓
�(0)� �

✓
A

�I,`

◆◆
+

µ

A
x

✓
1� 2Q

✓
A

2�I,`

◆◆
(210)

 � log

✓
1� �

A

µ

1� e�µ

◆✓
1�Q

✓
x

�I,`

◆
�Q

✓
A� x

�I,`

◆◆

+
µ�I,`
A

✓
�(0)� �

✓
A

�I,`

◆◆
+

µ

A
x. (211)

Here (210) follows from the fact that, for ⇠ 2 [0,A], 1 �Q(⇠) �Q(A� ⇠) achieves the
maximum value at ⇠ = A

2 , and that �(⇠) is monotonically decreasing; and (211) holds
because 1� 2Q(⇠)  1 and because x � 0.
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Combining (196), (199), and (211), and choosing

� =
µ
p
2⇡e�I,`

A(1� e�µ) + µ
p
2⇡e�I,`

(212)

now yield

�EWI,`(YI,`|x̄I,`)[logRI,`(YI,`)]

 log

✓p
2⇡e�I,` +A · 1� e�µ

µ

◆
+

µ�I,`

A
p
2⇡

 
1� e

� A2

2�2
I,`

!
+

µ

A
x̄I,`. (213)

Substituting (213) into (190), we have

CH(A,↵A)

 H(p⇤) +
X

I2U
p⇤I log|detHI |�

nR

2
log 2⇡e+

X

I2U
p⇤I

nRX

`=1

log

✓p
2⇡e�I,` +A · 1� e�µ

µ

◆

+
µ

A
p
2⇡

X

I2U
p⇤I

nRX

`=1

�I,`

 
1� e

� A2

2�2
I,`

!
+

µ

A

X

I2U
p⇤I

nRX

`=1

E
⇥
X̄I,`

��U? = I
⇤

(214)

= H(p⇤) +
X

I2U
p⇤I log

|detHI |
VH

+ logVH +
X

I2U
p⇤I

nRX

`=1

log

✓
�I,` +

Ap
2⇡e

· 1� e�µ

µ

◆

+
µ

A
p
2⇡

X

I2U
p⇤I

nRX

`=1

�I,`

 
1� e

� A2

2�2
I,`

!
+

µ

A

X

I2U
p⇤I
��H�1

I
�
E[X? |U? = I]� vI

���
1

(215)

 logVH �D(p⇤kq) +
X

I2U
p⇤I

nRX

`=1

log

✓
�I,` +

Ap
2⇡e

· 1� e�µ

µ

◆

+
µ

A
p
2⇡

X

I2U
p⇤I

nRX

`=1

�I,`

 
1� e

� A2

2�2
I,`

!
+ µ

 
↵�

X

I2U
p⇤IsI

!
, (216)

where (215) follows from (181), and (216) from (39). Theorem 17 is proven by taking
the supremum over the probability vector p and the infimum over µ > 0.

E.3 Proof of Theorem 18
We choose

RI,`(y) =

8
>>>>>><

>>>>>>:

1p
2⇡�I,`

e
� y2

2�2
I,` if y 2 (�1,��),

µ
A ·

1�2Q
⇣

�
�I,`

⌘

e
µ�
A �e�µ(1+ �

A
)
e�

µy
A if y 2 [��,A+ �],

1p
2⇡�I,`

e
� (y�A)2

2�2
I,` if y 2 (A+ �,1),

(217)

where �, µ > 0 are free parameters. Following the steps in the proof of [5, App. B.B]
and bounding 1�Q(⇠1)�Q(⇠2)  1, we obtain:

�EX̄I,`|U?=I

h
EWI,`(YI,`|X̄I,`)[logRI,`(YI,`)]

i

 log

0

@A · e
µ�
A � e�µ(1+ �

A )

µ
⇣
1� 2Q

⇣
�

�I,`

⌘⌘

1

A+
�p

2⇡�I,`
e
� �2

2�2
I,` +Q

✓
�

�I,`

◆

+
µ�I,`

A
p
2⇡

 
e
� �2

2�2
I,` � e

� (A+�)2

2�2
I,`

!
+

µ

A
E
⇥
X̄I,`

��U? = I
⇤
. (218)

Plugging (218) into (190) and using a derivation analogous to (214)–(216) then results
in the given bound.
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E.4 Proof of Theorem 19
Using that

h(Y)  1

2
log
�
(2⇡e)nR detKYY

�
, (219)

where

KYY = KX̄X̄ + I, (220)

we have

CH(A,↵A) = max
PX

�
h(Y)� h(Z)

 
(221)

 max
PX

⇢
1

2
log
�
(2⇡e)nR det(KX̄X̄ + I)

�
� 1

2
log(2⇡e)nR

�
(222)

= max
PX

1

2
log det(I+ KX̄X̄) (223)

 max
PX

1

2
log

nRY

i=1

�
I+ KX̄X̄

�
i,i

(224)

= max
PX

nR

2

nRX

i=1

1

nR
log
⇣
1 +

�
KX̄X̄

�
i,i

⌘
(225)

 max
PX

nR

2
log

 
1 +

nRX

i=1

1

nR

�
KX̄X̄

�
i,i

!
(226)

= max
PX

nR

2
log

✓
1 +

1

nR
tr
�
KX̄X̄

�◆
(227)

=
nR

2
log

✓
1 +

1

nR
max
PX

tr
�
KX̄X̄

�◆
. (228)

Here, (224) follows from Hadamard’s inequality, and (226) follows from Jensen’s inequal-
ity.

F Derivation of Asymptotic Results

F.1 Proof of Theorem 20
It follows directly from Theorem 14 that the RHS of (76) is a lower bound to its LHS.
To prove the other direction, using that D(pkq) � 0, we have from Theorem 16 that

CH(A,↵A)  logVH + nR log

✓
�max +

Ap
2⇡e

◆
(229)

where

�max , max
I2U

`2{1,...,nR}

�I,`. (230)

This proves that the RHS of (76) is also an upper bound to its LHS, and hence completes
the proof of (76).

Next, we prove (77). Again, that its RHS is a lower bound to its LHS follows
immediately from Theorem 15. To prove the other direction, we define for any p:

�(p) , ↵�
X

I2U
pIsI  ↵. (231)
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We then fix A � 1 and choose µ depending on �(p) to be

µ =

8
><

>:

µ⇤(p) if A�(1�⇣) < �(p)
nR

< 1
2 ,

A
1�⇣ if �(p)

nR
 A

�(1�⇣),
1
A if �(p)

nR
� 1

2 ,

(232)

where 0 < ⇣ < 1 is a free parameter and µ⇤(p) is the unique solution to

1

µ⇤ � e�µ⇤

1� e�µ⇤ =
�(p)

nR
. (233)

Note that in the first case of (232),

A
�(1�⇣) <

�(p)

nR
=

1

µ⇤(p)
� e�µ⇤(p)

1� e�µ⇤(p)
<

1

µ⇤(p)
, (234)

i.e.,

µ⇤(p) < A
1�⇣ , (235)

and thus the choice (232) makes sure that in all three cases, irrespective of p:

µ  A
1�⇣ , for A � 1. (236)

Then, for A � 1, the upper bound (72) can be loosened as follows:

CH(A,↵A)  1

2
log

✓
A

2nRV
2
H

(2⇡e)nR

◆
+ f(A) + sup

p
g(A,p, µ) (237)

where

f(A) , nR�max

A
⇣
p
2⇡

✓
1� e

� A2

2�2
min

◆
, (238)

g(A,p, µ) , nR log

 p
2⇡e�max

A
+

1� e�µ

µ

!
+ µ�(p)�D(pkq) (239)

with �max defined in (230) and with

�min , min
I2U

`2{1,...,nR}

�I,`. (240)

Note that

lim
A!1

f(A) = 0. (241)

Next, we upper-bound g(A,p, µ) individually for each of the three different cases in
(232) to obtain a bound of the form

g(A,p, µ) 

8
><

>:

g1(A) if A�(1�⇣) < �(p)
nR

< 1
2 ,

g2(A) if �(p)
nR

 A
�(1�⇣),

g3(A) if �(p)
nR

� 1
2 ,

(242)

for three functions g1, g2, and g3 that only depend on A but not on p or µ. Thus, we
shall then obtain the bound

g(A,p, µ)  max{g1(A), g2(A), g3(A)}, A � 1. (243)

The functions g1, g2, and g3 are introduced in the following.
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For the first case where �(p)
nR

2
�
A

�(1�⇣), 1
2

�
, we have

g(A,p, µ) = nR log

 p
2⇡e�max

A
+

1� e�µ⇤(p)

µ⇤(p)

!
+ µ⇤(p)�(p)�D(pkq) (244)

= nR log

 
1 +

µ⇤(p)

1� e�µ⇤(p)
·
p
2⇡e�max

A

!

+ nR

✓
1� log

✓
µ⇤(p)

1� e�µ⇤(p)

◆
� µ⇤(p) e�µ⇤(p)

1� e�µ⇤(p)

◆
�D(pkq) (245)

 sup
p : �(p)

nR
2(A⇣�1, 12 )

(
�D(pkq) + nR log

 
1 +

µ⇤(p)

1� e�µ⇤(p)
·
p
2⇡e�max

A

!

+ nR

✓
1� log

✓
µ⇤(p)

1� e�µ⇤(p)

◆
� µ⇤(p) e�µ⇤(p)

1� e�µ⇤(p)

◆)
(246)

, g1(A). (247)

Here, in (245) we have used (233).
For the second case where �(p)

nR
 A

�(1�⇣), we use this inequality in combination
with (232) to bound

µ�(p)  A
1�⇣ · nRA

�(1�⇣) = nR. (248)

Because D(pkq) � 0, we thus obtain

g(A,p, µ)  nR log

 p
2⇡e�max

A
+

1� e�µ

µ

!
+ nR (249)

= nR log

 p
2⇡e�max

A
+

1� e�A1�⇣

A
1�⇣

!
+ nR (250)

, g2(A). (251)

For the third case where �(p)
nR

� 1
2 , we have

g(A,p, µ) = nR log

 p
2⇡e�max

A
+

1� e�
1
A

1
A

!
+

�(p)

A
�D(pkq) (252)

 nR log

 p
2⇡e�max

A
+

1� e�
1
A

1
A

!
+

↵

A
� inf

p : �(p)
nR

> 1
2

D(pkq) (253)

, g3(A). (254)

Here, we used (231) to bound �(p)  ↵.
We have now established (243) for the three functions defined in (247), (251), and

(254), respectively. We now analyze the maximum in (243) when A ! 1. Since
g2(A) tends to �1 as A ! 1, and since g1(A) and g3(A) are both bounded from
below for A � 1, we know that, for large enough A, g2(A) is strictly smaller than
max{g1(A), g3(A)}.

We next look at g3(A) when A ! 1. Note that

lim
A!1

1� e�
1
A

1
A

= 1, (255)

therefore

lim
A!1

g3(A) = � inf
p : �(p)

nR
> 1

2

D(pkq) (256)
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= � inf
p : ↵�

P
I2U pIsI�

nR
2

D(pkq) (257)

= � inf
p : ↵�

P
I2U pIsI=

nR
2

D(pkq), (258)

where the last equality holds because given ↵ < ↵th, an optimal p will meet the con-
straint with equality.

It remains to investigate the behavior of g1(A) when A ! 1. To this end, we define

g̃1(A,p) , �D(pkq) + nR log

 
1 +

µ⇤(p)

1� e�µ⇤(p)
·
p
2⇡e�max

A

!

+ nR

✓
1� log

✓
µ⇤(p)

1� e�µ⇤(p)

◆
� µ⇤(p) e�µ⇤(p)

1� e�µ⇤(p)

◆
, (259)

and note that, for any fixed p,

�(A,p) , g̃1(A,p)� lim
A!1

g̃1(A,p) = log

 
1 +

µ⇤(p)

1� e�µ⇤(p)
·
p
2⇡e�max

A

!
. (260)

Since, when A ! 1,

|�(A,p)|  log

 
1 +

�����
1

1� e�A1�⇣ ·
p
2⇡e�max

A
⇣

�����

!
! log(1) = 0, (261)

we see that g̃1(A,p) converges uniformly over p as A ! 1, and therefore we are allowed
to interchange limit and supremum:

lim
A!1

g1(A)

= lim
A!1

sup
p : �(p)

nR
2(A⇣�1, 12 )

g̃1(A,p) (262)

= sup
p : �(p)

nR
2(0, 12 )

lim
A!1

g̃1(A,p) (263)

= sup
p : �(p)

nR
2(0, 12 )

(
nR

✓
1� log

µ⇤(p)

1� e�µ⇤(p)
� µ⇤(p) e�µ⇤(p)

1� e�µ⇤(p)

◆
�D(pkq)

)
(264)

= sup
p : �(p)2(max{0,nR

2 +↵�↵th},min{nR
2 ,↵})

(
nR

✓
1� log

µ⇤(p)

1� e�µ⇤(p)
� µ⇤(p) e�µ⇤(p)

1� e�µ⇤(p)

◆

�D(pkq)
)

(265)

= ⌫. (266)

Here, in (265) we are allowed to restrict the supremum3 to �(p) 2 (nR
2 + ↵ � ↵th,↵)

because of (231) and because

�(q) , ↵�
X

I2U
sIqI = ↵� ↵th +

nR

2
(267)

and for any p such that �(p)  �(q) the objective function in (264) is smaller than for
p = q. In fact, �D(pkq) is clearly maximized for p = q and

µ⇤(p) 7! nR

✓
1� log

µ⇤(p)

1� e�µ⇤(p)
� µ⇤(p) e�µ⇤(p)

1� e�µ⇤(p)

◆
(268)

3
Notice that because of the supremum and continuity, we can restrict to the open interval instead

of the closed interval.
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is decreasing in µ⇤(p), which is a decreasing function of �(p); see (233). Finally, (266)
follows from the definition of ⌫ in (68).

It is straightforward to see that ⌫ is larger than the RHS of (258). Therefore,

lim
A!1

max{g1(A), g2(A), g3(A)} = ⌫. (269)

Combining (237) with (241), (243), and (269) proves the theorem.

F.2 Proof of Theorem 21
From [23, Corollary 2], it is known that the capacity is lower-bounded as

CH(A,↵A) � 1

2
max
PX̄

tr
�
KX̄X̄

�
+ o

✓
max
PX̄

tr
�
KX̄X̄

�◆
. (270)

For an upper bound, we use that

log(1 + ⇠)  ⇠, ⇠ > 0, (271)

and obtain from Theorem 19 that

CH(A,↵A)  1

2
max
PX̄

tr
�
KX̄X̄

�
. (272)

The theorem is proven by normalizing X̄ by A, which results in a factor A2, and by then
letting A go to zero.
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