Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Pré-publication, Document de travail

Weakly stationary stochastic processes valued in a separable Hilbert space: Gramian-Cramér representations and applications

Abstract : The spectral theory for weakly stationary processes valued in a separable Hilbert space has known renewed interest in the past decade. Here we follow earlier approaches which fully exploit the normal Hilbert module property of the time domain. The key point is to build the Gramian-Cramér representation as an isomorphic mapping from the modular spectral domain to the modular time domain. We also discuss the general Bochner theorem and provide useful results on the composition and inversion of lag-invariant linear filters. Finally, we derive the Cramér-Karhunen-Loève decomposition and harmonic functional principal component analysis, which are established without relying on additional assumptions.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

https://hal.telecom-paris.fr/hal-02318267
Contributeur : Amaury Durand Connectez-vous pour contacter le contributeur
Soumis le : mercredi 5 octobre 2022 - 14:15:28
Dernière modification le : jeudi 6 octobre 2022 - 03:42:36

Fichiers

filtering-hilbert-esaim-v3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02318267, version 6

Collections

Citation

Amaury Durand, François Roueff. Weakly stationary stochastic processes valued in a separable Hilbert space: Gramian-Cramér representations and applications. 2022. ⟨hal-02318267v6⟩

Partager

Métriques

Consultations de la notice

592

Téléchargements de fichiers

334