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Abstract—In this paper, we investigate machine learning
approaches addressing the problem of geolocation. First, we
review some classical learning methods to build a radio map. In
particular, these methods are splitted in two categories, which we
refer to as likelihood-based methods and fingerprinting methods.
Then, we provide a novel geolocation approach in each of
these two categories. The first proposed technique relies on a
semi-parametric Nadaraya-Watson estimator of the likelihood,
followed by a maximum a posteriori (MAP) estimator of the
object’s position. The second technique consists in learning a
proper metric on the dataset, constructed by means of a Gradient
boosting regressor: a k-nearest neighbor algorithm is then used
to estimate the position. Finally, all the proposed methods are
compared on a data set originated from Sigfox network. The
experiments show the interest of the proposed methods, both in
terms of location estimation performance, and of ability to build
radio maps.

Keywords: LPWA Network, localization, maximum
likelihood, metric learning

I. INTRODUCTION

Approaches based on the measurement of the received
signal strength indicator (RSSI) to geolocate connected objects
have witnessed tremendous success since Internet of Things
(IoT) is on the rise. In the last few years, IoT has raised a
great deal of attention in very diverse fields such as agriculture
or health care. Experts agree (in [1]) that 30 billions objects
will be part of the IoT by 2023 and 40% of these objects
will need to be geolocated (e.g for freight transport). To guar-
antee reliable connectivity between a multitude of connected
devices, researchers have been developing various Low Power
Wide Area Network (LPWAN) standards [2]. The IoT requires
LPWAN standards to support long-range communications.
Moreover, ultra-low power consumption is a crucial aspect
for the lifetime devices.

Several standard methods such as channel-fingerprinting
provide satisfying results in the situation where the propa-
gation channel exhibits enough frequency diversity as shown
in [3]. Nevertheless, in many network of interest, every mes-
sage transmitted occupies an Ultra Narrow Band (UNB). For
instance, for the Sigfox network, the message occupies a band
of 100 Hz within the Industrial, Scientific and Medical Band
which corresponds to the frequency between 868 MHz and
868.2 MHz in Europe. As a consequence, the geolocation by

means of channel-fingerprinting becomes irrelevant because of
the absence of frequency diversity.

When the BS’s of a network are time-synchronized, time
based approaches as Time Difference Of Arrival (TDOA) pro-
vide accurate methods for geolocation [4] and [5]. However,
when the BS’s are not time-synchronized, the collection of the
Received Signal Strength Indicator (RSSI) observed at all the
BS is, by default, the main source of information allowing to
geolocate the source.

In the present paper, we focus on a baseline probabilistic
RSSI-only localization algorithm. The main challenge comes
from the large range of fluctuations of the observed RSSI
values, for a given source location. In such data, the observed
signals can be very noisy, especially in urban environment
(RSSI based methods are often assisted with accelerometers,
gyroscopes or Bluetooth beacons to improve their accuracy
[6]). It may also happen that, due to range limitation or
network sensitivity, some messages are not detected by some
BS’s. Experience has shown that the performance is increased
when the information of non reception is taken into account.
Very few models in the literature chose to regard the informa-
tion given by the non reception, though. Most of the time, the
RSSI in the case of non reception, is replaced by the lowest
RSSI amongst all observed RSSI’s, as e.g in [7].

In this paper, we reviewed important off-the-shelf methods
for RSSI based geolocation. Based on this review , we have
observed that two methods arose amongst the most performant
methods for the task of location estimation. First, ensemble
methods (used e.g in [8]) as XGBoost Regressor, and k-NN
regressor (e.g [6]).
Contributions.
• We provided a method exploiting the advantages of both

ensemble methods and k−NN regressor. The idea, bor-
rowed from [9], is to learn the metric used by the k-NN
explicitly for the location estimation task. That is, build
a metric to compare two RSSI’s vectors, such that the k-
NN regressor can chose the most appropriate neighbours
for the location estimation task. The main idea here is
to learn this metric d such that for a couple of RSSI’s
vector (r, r′): d(r, r′) is a good predictor of the euclidean
distance between the two emitters locations ‖z−z′‖2. We
thus expect that through this metric, the k-NN regressor
will be able to chose (within the training set) the k nearest



points of z and then compute their mean. We propose to
learn d as a sum of T regression trees. Those trees are
obtained through a XGBoost algorithm. The benefits w.r.t.
a classic k-NN regressor are twofold:

– it takes into account the information of reception/non
reception of the signal at a BS;

– it improves the model by optimizing the metric
explicitly for the task of geolocation. This drives to
better performances of the model (see Section V).

• We proposed a semi-parametric model relying on a rele-
vant likelihood of the RSSI’s given the object’s position.
The shape of the likelihood, is based on a model assump-
tion, of Naive Bayes type: given the emiter position, the
coordinates of the RSSI vector are independent. Through-
out this paper, this assumption will be accepted. The main
benefit of this assumption is to allow a low complexity
of the model and to make it numerically tractable. The
distribution of a RSSI at a given BS, given the location of
the emitter will be model by a Gaussian distribution. The
mean, and the standard deviation of this distribution are
obtained by a non-parametric estimator of type Nadaraya-
Watson. Finally, the location estimation will be obtained
using a Maximum-A-Posteriori (MAP). This proposed
estimator enables us to take into account the Boolean
variable modeling the reception/non reception of the
signal at BS’s. The advantages of the provided method
are manyfold:

– it provides good results, even on small training data
sets. Moreover, its performances are relatively stable
when the number of training points decreases;

– it offers a statistical framework through which den-
sity level sets and confident regions on the location
estimate can be easily computed, when classical
machine learning methods (as k-NN), are not able
to do so.

• We provide detailed experiments results to compare these
methods using real data originated from Sigfox network.

The rest of the paper is organized as follows. In Section II,
we introduce the problem setting. Section III investigates sev-
eral popular geolocation techniques of the literature. Section
IV introduces the proposed predictors. Finally, Section V is
devoted to the numerical experiments and discussions.

II. PROBLEM SETTING

The network under consideration is dedicated to long-range
and low-power consumption IoT communications. The range
of transmission is up to 100 km, and the battery life-time is
about 20 years. The network is composed of K fixed BS, say
(BS1, . . . ,BSK), whose respective coordinates (z1, . . . , zK)
in the complex plane are known.

Consider a connected device whose position Z is a random
variable in some given subset Z , typically an open subset
of R2. The device sends packets/messages which are collected
by the neighboring BS. For a given message, each BS k (k =
1, . . . ,K) computes a RSSI Rk as the temporal mean of the

Fig. 1. Image of a sample of the locations emitters.

BS 1 BS 2 ... BS K Lat Long

−102 NaN ... −83 49.15434 2.24928

NaN −98 ... NaN 48.865584 2.44567

Fig. 2. Sample from the Sigfox dataset

received signal strength. The RSSI Rk is typically real-valued
in a certain subset R ⊂ R. However, due to range limitation
and network sensitivity, some messages may not be detected
by some BS, in which case we just set Rk = NaN, where
NaN stands for an unobserved value. We thus assume that for
every k = 1, . . . ,K, Rk is a random variable in the set R̃ :=
R
⋃
{NaN}.

The aim of this paper is to predict the unknown position Z
from the observation of the RSSI-vector

R := (R1, . . . , RK) .

A predictor is a function Ẑ : R̃K → Z . We evaluate the
performance of a predictor w.r.t. to the risk E(`(Z, Ẑ(R)))
where E is the expectation, ` : Z × Z → R is a loss. In
typical settings, `(z, ẑ) = ‖z − ẑ‖2.

To achieve this task, we assume that the network operator
has collected a dataset of fully supervised examples. The
dataset is built by gathering observed RSSI’s of devices
equipped with GPS. As represented in Fig. II, every row of the
dataset corresponds to a message. The features are the RSSI’s
at the receiving BS’s and the label is the GPS coordinates
of the transmitting device at the instant when the packet is
sent. Formally, the dataset is represented by a collection of n
random samples Xn := {(Zi,Ri) : i = 1, . . . , n}, assumed
to be iid copies of (Z,R).

III. REVIEW OF GEOLOCATION APPROACHES

In this section, we discuss different off-the-shelf predictors
which can be used to solve the geolocation task introduced
above.

A. Likelihood-based methods

We refer to as Likelihood-based methods the methods
which learn from the dataset a likelihood model p(r|z) for
the conditional probability of the RSSI vector R given the
position Z.



One first learns from the observed data Xn a mapping p(r|z)
which represents the conditional probability density function
(pdf) of R|Z namely, the likelihood. To this end, a way is
to introduce a parametric likelihood model, such as the path-
loss model discussed at the end of this paragraph, and to learn
the parameters of this model from the dataset. Non-parametric
methods can be used as well (see Section IV). One of the main
advantages is that some prior hypotheses on the form of the
likelihood p(r|z) can be easily introduced, based on physical
considerations. One such hypothesis is the following:

Assumption 1. The components R1, . . . , RK of the random
vector R are independent conditionally to Z.

Assumption 1 is often used in the literature [10], [11], [12].
Discussing its validity is out of the scope of this paper, but we
refer the interested reader to [13] where a independence kernel
based test is proposed. Under this hypothesis, the likelihood
admits the following decomposition:

p(r|z) =
K∏
k=1

pk(rk|z) ,

where r = (r1, . . . , rK) and where p1, . . . , pK are conditional
marginals to be learned.

Once the likelihood model p(r|z) has been obtained, the
predictor Ẑ(R) can be easily defined from standard statistical
methods. Assume now that a new message arises from the
unknown position Z with a RSSI vector R. A legitimate
(but often computationally intractable) choice is to define the
predictor Ẑ(R) as a minimizer w.r.t. ẑ of the estimated risk:∫

`(z, ẑ)p(z|R)dz (1)

where, according to the Bayes formula, p(z|R) ∝
p(R|z)pZ(z) and where pZ(z) is the prior distribution of the
r.v. Z supposed to be known (typically uniform on Z as in
[14], or inferred from the dataset Xn). As the computation
and the minimization of (1) can be difficult, an alternative is
to consider the Maximum-a-Posteriori (MAP) estimator given
by:

ẐMAP (R) := arg max
z∈Z

p(z|R)

= arg max
z∈Z

K∑
k=1

log pk(Rk|z) + log pZ(z). (2)

To conclude this paragraph, we briefly discuss the broadly
used log-loss (or path-loss) parametric model [6], [15]. The
model is widely used to model the coupling between the
received power at the receiver antenna and the distance be-
tween the received and emitter. The conditional distribution
pk(r|z) of Rk|Z is supposed to have the form pθk(r|z) where
θk = (P0,k, νk, σ

2
k) is a triplet of parameters pθk( . |z) is

a Gaussian distribution of variance σ2
k and mean P0,k −

10νk log10 dv(z, zk)/d0. Here, d0 is some reference distance
and dv stands for the Vincenty distance, the parameters
P0,k, νk respectively represent the power in dBm at distance

d0 and νk is the so-called path-loss exponent. The parameter
vector θ = (θ1, . . . , θK) is estimated from the dataset Xn
using a standard maximum likelihood approach.

B. Fingerprinting Methods

Fingerprinting methods directly map the vector R into a
position Z, typically by means of a supervised learning algo-
rithm. In the following, we present several popular learning
algorithms to perform the task of geolocation.

1) k-Nearest Neighbors (k-NN): The method is used in [7]
in the context of outdoor geolocation. We endow the space of
RSSI’s vectors with the Euclidean distance. For this purpose,
[7] suggests to replace all the NaN values either by the lowest
RSSI amongst all observed RSSI, or by an arbitrary value
(the value -200 is used in [7]). For every K-dimensional
RSSI vector R, we let (R(1), Z(1)), . . . , (R(n), Z(n)) be a
reordering of the dataset Xn such that ‖R −R(1)‖ ≤ · · · ≤
‖R − R(n)‖. The unknown position Z is finally estimated
by Ẑ(R) := k−1

∑k
i=1 Z

(i), where the integer k is an
hyperparameter (see [16] for a discussion on the choice of
k).

2) Ensemble Trees Methods: A Random Forest model has
been applied as a classifier for a indoor-context geolocation
in (see [8]). In this paper, this method gets better accuracy
than a k-NN based method. The goal of such ensemble
methods is to combine the predictions of several base es-
timators built with a given learning algorithm in order to
improve the robustness and the ability to generalize over a
single estimator. Two important families are bagging methods
such as random forests [17], and boosting methods such
as Gradient Tree boosting. The final estimate has the form
Ẑ(R) =

∑T
t=1 ft(R) where T is an integer and f1, . . . , fT

are regression trees learned on the dataset Xn by one of the
above methods.

IV. PROPOSED GEOLOCATION METHODS

We propose two localization methods, one for each category.

A. Semi-Parametric Likelihood-Based Method

We propose the following semi-parametric likelihood model
for p(r|z), the conditional density of R given Z. As often
in geolocation [10], [11], [12], [6], we strongly rely on
the conditional independence Assumption 1. Using the later
hypothesis, it is sufficient to provide a model for the marginal
conditional distributions pk(rk|z) of Rk given Z, for every
k = 1, . . . ,K. Here, we recall that Rk is a random variable
over the set R∪{NaN}. Densities are thus considered w.r.t. the
reference measure λ+ δNaN where λ is the Lebesgue measure
and δNaN is the Dirac measure at the NaN-value. We define
πk : Z → [0, 1] as

πk(z) := P(Rk = NaN|Z = z)

and we constrain the model by assuming that, given Z and
given that Rk 6= NaN, Rk follows a Gaussian distribution



whose mean and variance are respectively denoted by mk(z)
and σ2

k(z):

mk(z) := E(Rk|Z = z,Rk 6= NaN)

σ2
k(z) := Var(Rk|Z = z,Rk 6= NaN) .

We denote by r 7→ Φ(r;m,σ2) the normal density of mean
m and variance σ2. We summarize our model is as follows:

1) R1, . . . , RK are independent given Z;
2) For every k,

P(Rk ∈ dr|Z) = πk(Z)δNaN(dr)

+ (1− πk(Z))Φ(r;mk(Z), σ2
k(Z))dr .

Based on this model, the likelihood p(r|z) is fully determined
by the mappings πk, mk and σ2

k for all k = 1, . . . ,K.
The remaining task is to estimates these quantities using our
dataset Xn. To this end, we propose to use a non-parametric
approach, and to replace these mappings with their Nadaraya-
Watson estimates [18]. Let K : Z → R+ be a kernel,
i.e., nonnegative, symmetric function integrating to one, and
let h > 0 be a scalar (the so-called bandwidth). Define
Kh(z) = h−1K(h−1z) for all z ∈ Z . The Nadaraya-Watson
estimates are respectively given for every k by

π̂k(z) := n−1
n∑
i=1

1NaN(R
i
k)Kh

(
Zi − z

)
m̂k(z) := Dk(z)−1

n∑
i=1

1R(Rik)RikKh

(
Zi − z

)
σ̂2
k(z) := Dk(z)−1

n∑
i=1

1R(Rik)(Rik −mk(z))2Kh

(
Zi − z

)
where Dk(z) :=

∑n
i=1 1R(Rik)Kh

(
Zi − z

)
. Under standard

technical conditions, π̂k, m̂k and σ̂2
k converge uniformly

towards πk, mk and σ2
k as n→∞ and nh→∞ [18]. Finally,

the MAP location estimator can be written as:

Ẑ(R) = arg max
z∈Z

∑
k∈IR

(1−π̂k(z)) log Φ(Rk; m̂k(z), σ̂2
k(z))

+
∑
k∈IcR

(1− π̂k(z)) + log p̂Z(z) ,

where IR := {k = 1, . . . ,K : Rk 6= NaN} stands for the set of
the receiving BS’s, and where p̂Z(z) stands for an estimation
of the prior on Z, which we suggest to estimate from the
dataset Xn through the kernel density estimator:

p̂Z(z) = n−1
n∑
i=1

Kh

(
Zi − z

)
.

B. Metric-Learning Fingerprinting Method

In this paragraph, we tackle the problem of learning an
adapted metric (see [19]) on RK to improve basic k-NN
using the standard Euclidean distance. We recall that NaN

values are here replaced by a fixed real value as discussed
in Section III-B. The idea is to build a mapping d : RK ×

Fig. 3. Scatter plots of the k nearest neighbors. In red, a sample of the
200 neighbors according to the euclidean distance. In blue, the 25 neighbors
according to the learned metric. In green stars, the true position of the emitter.

RK → [0,+∞) such that close RSSI (w.r.t. to the metric d)
correspond to close object positions (w.r.t. to the Vincenty
distance dv on Z). In that sense, a “good” metric (see Fig. 3)
is a mapping d for which the empirical risk

ERn(d) :=

n∑
i=1

n∑
j=1

(
d(Ri, Rj)− dv(Zi, Zj)

)2
is small. The main trick, borrowed from [20], [9] is to
search for a mapping d minimizing ERn(d) within a relevant
hypothesis class. More precisely, we search for d under the
form

d(r, r′) :=

T∑
t=1

ft(ϕ(r, r′)) ,

where f1, . . . , fT is a collection of T regression trees, and
where ϕ : RK ×RK → RK × RK is given by:

ϕ(r, r′) :=

(
|r − r′|
1
2 (r + r′)

)
.

In practice, the minimization of ERn(d) w.r.t. f1, . . . , fT
is untractable. An alternative is to use a Random Forest
or an XGboost regressor, which separately optimizes the T
regression trees. In practice, the learning stage is thuse as
follows:
• Compute the pairwise features ϕ(Ri,Rj) for all couples

(i, j) in the dataset;
• Use a regression tree ensemble method to predict the

labels dv(Zi, Zj) based on the features ϕ(Ri,Rj) .
Note that the obtained mapping d, though symmetric, is
not mathematically speaking a metric. This point is however
irrelevant regarding the application of interest. Given the
obtained metric and given an observed RSSI vector R, the
k-NN estimate of Z is computed as in Section III-B.

V. NUMERICAL EXPERIMENTS

A. Performance Analysis

To compare the performances of the different methods,
we use the Sigfox dataset Xn composed of n = 1.5 · 106

observations. The dataset was randomly split in a training
subset (90%) and a test subset (10%). The training subset was
used to perform cross-validation (each fold containing 10%



Fig. 4. Comparisons of the presented methods in terms of their performances.

Fig. 5. Heat map of the position Z|R for two different observations of R.
The red dots show the true positions. The black dots are the observed positions
in the test dataset corresponding for the same observations of R.

of the training set) in order to find the optimal parameters of
our algorithms. The test subset was employed to evaluate the
accuracy of the methods in competition.

To compute the errors we employ the Vincenty distance
between estimated and actual location. Fig. 4 shows the
cumulative distribution function of the estimation error for all
the presented methods. The k-NN with the learned metric turns
out to outperform the other methods of the paper. By contrast,
the Log Loss model is not relevent for this noisy urban dataset.

B. Heat Map estimation

A major benefit of the Semi-Parametric Likelihood-Based
method is that density level sets can be computed easily.
Thanks to the statistical framework, this method is able to
evaluate the probability density of Z|R at all z ∈ Z . This
density level sets are regions in which Z is most likely to
lie given the observation of R. This is shown in Fig. 5
where further information is provided on the uncertainty of
the estimation.

CONCLUSION

In this paper, we investigated machine learning approaches
addressing the problem of geolocation. We presented most
popular methods that can be found in the literature. Then, we
proposed two new techniques: one based on a likelihood and
the other on a learned metric for a k-NN. To compare these

methods, 1,5M observations were collected from the Sigfox
network. Results have shown that the metric learning method
has obtained the highest accuracy on this dataset. As for the
semi-parametric method, it goes beyond the simple estimation
by providing heat maps and level sets, making it, a suitable
methods for industrial applications.
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