M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander, LOF: Identifying density-based local outliers, Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, vol.29, pp.93-104, 2000.

V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection: A survey, ACM Computing Surveys (CSUR), vol.41, issue.3, 2009.

Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall et al., The UCR time series classification archive, 2015.

G. Claeskens, M. Hubert, L. Slaets, and K. Vakili, Multivariate functional halfspace depth, Journal of American Statistical Association, vol.109, issue.505, pp.411-423, 2014.

A. Cuevas, M. Febrero, and R. Fraiman, Robust estimation and classification for functional data via projection-based depth notions, Computational Statistics, vol.22, issue.3, pp.481-496, 2007.

J. H. Einmahl and D. M. Mason, Generalized quantile processes, The Annals of Statistics, vol.20, issue.2, pp.1062-1078, 1992.

F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis, 2006.

S. Hariri, M. Carrasco-kind, and R. J. Brunner, Extended isolation forest, 2018.

M. Hubert, P. J. Rousseeuw, and P. Segaert, Multivariate functional outlier detection, Statistical Methods & Applications, vol.24, issue.2, pp.177-202, 2015.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.

J. Li, J. A. Cuesta-albertos, and R. Y. Liu, DD-classifier: Nonparametric classification procedure based on DD-plot, Journal of the American Statistical Association, vol.107, issue.498, pp.737-753, 2012.

F. T. Liu, K. M. Ting, and Z. Zhou, Isolation forest, Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, pp.413-422, 2008.

F. T. Liu, K. M. Ting, and Z. Zhou, Isolation-based anomaly detection, ACM Transactions on Knowledge Discovery from Data (TKDD), vol.6, pp.1-39, 2012.

S. G. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on signal processing, vol.41, issue.12, pp.3397-3415, 1993.

V. Maz'ya, Sobolev Spaces: with Applications to Elliptic Partial Differential Equations, 2011.

K. Mosler, Depth statistics, Robustness and Complex Data Structures: Festschrift in Honour of Ursula Gather, pp.17-34, 2013.

K. Mosler and P. Mozharovskyi, Fast DD-classification of functional data, Statistical Papers, vol.58, issue.4, pp.1055-1089, 2017.

C. Park, J. Z. Huang, and Y. Ding, A computable plug-in estimator of minimum volume sets for novelty detection, Operations Research, vol.58, issue.5, pp.1469-1480, 2010.

W. Polonik, Minimum volume sets and generalized quantile processes, Stochastic Processes and their Applications, vol.69, pp.1-24, 1997.

J. O. Ramsay and B. W. Silverman, Functional Data Analysis, 2005.

B. Schölkopf, J. C. Platt, J. Shawe-taylor, A. Smola, and R. Williamson, Estimating the support of a high-dimensional distribution, Neural Computation, vol.13, issue.7, pp.1443-1471, 2001.

C. Scott and R. Nowak, Learning minimum volume sets, Journal of Machine Learning Research, vol.7, pp.665-704, 2006.