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ABSTRACT

In the last decades, several approaches for solving the Phase
Unwrapping (PhU) problem using multi-channel Interfero-
metric Synthetic Aperture Radar (InSAR) data have been de-
veloped. Many of the proposed approaches are based on sta-
tistical estimation theory, both classical and Bayesian. In
particular, the statistical approaches based on the use of the
whole complex multi-channel dataset have turned to be effec-
tive. The latter are based on the exploitation of the covariance
matrix, which contains the parameters of interest. In this pa-
per, the added value of the Non Local (NL) paradigm within
the InSAR multi-channel PhU framework is investigated. The
analysis of the impact of NL technique is performed using
multi-channel realistic simulated data and X-band data.

Index Terms— SAR Interferometry, Phase Unwrapping,
Multi-channel, Non Local Paradigm

1. INTRODUCTION

Synthetic Aperture Radar Interferometry (InSAR) is a power-
ful technique able to provide the height of the observed scene.
The main aspects that limit the application of this technique
for the generation of the Digital Elevation Models (DEM)
are the presence of noise and the wrapped nature of the ac-
quired phase data. In particular, the combination of these
two effects makes the height retrieval problem an ill-posed
one. In particular, when the absolute value of interferometric
phase difference between neighboring pixels exceeds 7, the
obtained solution is ambiguous [1], [2]. It is, therefore, nec-
essary to exploit more data in order to restore the uniqueness
of the solution and to provide the height estimation. Multi-
channel (MC) interferometry has turned to be an effective
instrument for this aim. In MC Interferometry multiple in-
terferograms acquired with different channels (baselines or
frequencies) are jointly exploited [3], [4].

In the last fifteen years several multi-channel algorithms have
been presented [5], [6], [7], [8]. Among multi-channel tech-
niques, algorithms based on the exploitation of the whole

complex dataset have shown interesting and effective results
[9]. The idea is to model jointly all channels of the MC
SAR image: instead of marginalizing the data distribution
with respect to missing parameters the joint distribution of
the data can be used. Within this framework, the estimation
of the covariance assumes a fundamental role. Usually it is
estimated using a limited number of samples, selected in a
local neighbor of the considered pixel, as it happens in box-
car based approaches. However several limitations of such
an estimation are known, such as loss of resolution. A ro-
bust estimation of the covariance matrix, provided by the NL
paradigm could provide an added value. In this paper, the
analysis of the impact of NL technique on the multi-channel
PhU reconstruction problem is performed. The use of NL
approach for 3D reconstruction within classical and Bayesian
estimation theory PhU algorithm is addressed. A comparison
with the classical boxcar-averaging approach is reported and
results are discussed and evaluated. In order to quantitatively
compare the different algorithms and to highlight the pecu-
liarity of each approach, a testing scenario is constructed.
Finally, a qualitative analysis is conducted on real X-band
data.

2. METHODS

In this section different methods for multi-channel PhU based
on the whole complex data are briefly described. For all the
considered methods, the notation is the following: D is the
number of available channels (i.e. baselines), ¢ designates
one of the N pixels of the image, a and b are two channels
among the D channels, A is the working wavelength,, ; is
the coherence coefficient, B (a, b) is the orthogonal baseline
between channels a and b, pg is the distance to the scene, and
0 is the view angle.

2.1. ML estimator

The first method presented is the classical Maximum Likeli-
hood (ML) one [9].



The measured values are collected in the vector g; of D com-
plex values. The statistical distribution of g; for the pixel i,
under the hypothesis of fully developed speckle is given by a
complex circular Gaussian distribution:

p(g;|%;) = exp(—g! =7 g)) (1)
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with t the Hermitian transpose operator and 3; is the com-
plex covariance matrix at pixel ¢ which depends on the ra-
diometry I, the inter-channel coherence ~, ; and the interfer-
ometric phases 9, , previously defined. The latter is related
to the height h by a well known relation, that accounts for
the interferometric baseline, possible atmospheric distortions
and other calibration parameters. The Maximum Likelihood
(ML) estimator of the height can be obtained as:

h =argmax p(g;|%;) 2
h

In order to perform the maximization, an estimation of the co-
variance matrix 3; is needed. A simple boxcar filter could be
applied. The estimation of ¥; is obtained by spatial averaging
over a square window centered on the considered pixel.

2.2. ML-NL estimator

The previous approach suffers of one main drawback: the co-
variance estimation involves an averaging procedure that de-
grades the spatial resolution by blurring thin structures. It
can be interesting to include in the estimation of 3; not the
neighboring pixels, but the similar ones. In other words, the
covariance matrix could be estimated by using the similar pix-
els found across the whole image. The estimated covariance
matrix can thus be obtained as:

1
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where w; ; are the non-local coefficients that balance the
weight of observations g; at pixel j according to their rele-
vance for the estimation at pixel 7. It is clear that the choice of
the weights is crucial. We chose to compute the weights us-
ing the NL-SAR algorithm [10], which has shown interesting
performances.

2.3. MAP estimator

Moving to Bayesian estimation theory, the contextual infor-
mation is added to the likelihood function. The idea is to
model the unknown parameters by using an a priori statistical
distribution, which takes into account the correlation between
each pixel and its neighborhood. An effective tool to statisti-
cally describe and model the unknown image is the Markov
random field (MRF). In particular we adopt the Total Varia-
tion (TV) energy model. The Maximum a Posteriori solution

is given by adding the TV energy model to the logarithm of
the likelihood term of Eq. (1). In particular:

h = arg min[—log p(g,;|%;) + TV(h)], 4)
h

Again, in order to perform the maximization, an estimation
of the covariance matrix 3J; is needed. A simple boxcar filter
could be applied.

2.4. MAP-NL estimator

Following the ML-NL approach, the maximum a posteriori
estimator can be modified taking into account the similarity
between pixels. In particular, the similarity is exploited for
the estimation of the covariance matrix 3; at each pixel us-
ing NL-SAR method [10]. Using this approach, and by mak-
ing some simple considerations the function of Eq. (4) can
be simplified into an easier expression, providing the Patch-
based estimation and regularized inversion for multi-baseline
SAR interferometry (PARISAR) estimator proposed in [11].

3. TESTING FRAMEWORK

The four previously presented techniques have been com-
pared on both simulated and real dataset. Concerning the
simulated dataset, the scenario consists of 6 buildings with
different heights and shapes (see Fig.1 - True Profile). Three
complex images have been simulated starting from the True
Profile and the mean coherence map (see Fig.1 - Coher-
ence). In order to make it more realistic, the data have been
simulated considering different coherence values, including
shadowing ones. Two of the three available interferograms
are shown in the first line of Fig.1. Concerning the optimiza-
tion step, a graph-cut algorithm using Ishikawa’s construction
is adopted for all the considered algorithms. The results of the
previously reported methods are shown in the second line of
Fig.1. The added value of the NL apporach is evident for both
ML-NL and MAP-NL, compared to ML and MAP, respec-
tively. The effectiveness of the exploitation of similar pixels
for the estimation of the covariance matrix, and consequently
for the 3D reconstruction is evident.

The four methods have also been tested on a real dataset.
This dataset is composed of three COSMO-SkyMed Stripmap
images acquired close to Nola. In the first row of Figure 2
the data (interferograms) are reported together with the mean
coherence. In the second row the estimations using ML,ML-
NL, MAP and MAP-NL are shown. Again the effectiveness
of the NL apporach is evident.

In the final version of the paper a quantitative analysis
based on computational time, memory complexity and accu-
racy will be carried out, together with a qualitative analysis
based on in situ optical images of the observed Nola area.
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Fig. 1. Simulated Dataset. First row: interferograms and true profile. Second row: results using different approaches.
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Fig. 2. Real Dataset. First row: interferograms and coherence image. Second row: results using different approaches.
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