E. A. Maloney and S. L. Beilock, Math anxiety: who has it, why it develops, and how to guard against it, Trends Cogn Sci, vol.16, pp.404-406, 2012.

D. Lee, H. Seo, and M. W. Jung, Neural basis of reinforcement learning and decision making, Annu Rev. Neurosci, vol.35, pp.287-308, 2012.

D. R. Godden and A. D. Baddeley, Context-dependent memory in two natural environments: on land and underwater, Br. J. Psychol, vol.66, pp.325-331, 1975.

D. L. Wright and C. H. Shea, Contextual dependencies in motor skills, Mem. Cogn, vol.19, pp.361-370, 1991.

D. Marr, A computational investigation into the human representation and processing of visual information, 1982.

D. Huber, Multiple dynamic representations in the motor cortex during sensorimotor learning, Nature, vol.484, pp.473-478, 2012.

A. K. Dhawale, Automated long-term recording and analysis of neural activity in behaving animals, vol.6, p.27702, 2017.

A. J. Peters, S. X. Chen, and T. Komiyama, Emergence of reproducible spatiotemporal activity during motor learning, Nature, 2014.

S. P. Peron, J. Freeman, V. Iyer, C. Guo, and K. Svoboda, A cellular resolution map of barrel cortex activity during tactile behavior, Neuron, vol.86, pp.783-799, 2015.

J. Poort, Learning enhances sensory and multiple non-sensory representations in primary visual cortex, Neuron, vol.86, pp.1478-1490, 2015.

M. W. Chu, W. L. Li, and T. Komiyama, Balancing the robustness and efficiency of odor representations during learning, Neuron, vol.92, pp.174-186, 2016.

H. K. Kato, S. N. Gillet, and J. S. Isaacson, Flexible sensory representations in auditory cortex driven by behavioral relevance, Neuron, vol.88, pp.1027-1039, 2015.

O. Jurjut, P. Georgieva, L. Busse, and S. Katzner, Learning enhances sensory processing in mouse V1 before improving behavior, J. Neurosci, vol.37, pp.6460-6474, 2017.

S. D. Halpern, T. J. Andrews, and D. Purves, Interindividual variation in human visual performance, J. Cogn. Neurosci, vol.11, pp.521-534, 1999.

L. D. Matzel, Individual differences in the expression of a "general" learning ability in mice, J. Neurosci, vol.23, pp.6423-6433, 2003.

G. Luksys, W. Gerstner, and C. Sandi, Stress, genotype and norepinephrine in the prediction of mouse behavior using reinforcement learning, Nat. Neurosci, vol.12, pp.1180-1186, 2009.

B. Bathellier, S. P. Tee, C. Hrovat, and S. Rumpel, A multiplicative reinforcement learning model capturing learning dynamics and interindividual variability in mice, Proc. Natl Acad. Sci. USA, vol.110, pp.19950-19955, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01179711

R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction 1, 1998.

K. Doya, Reinforcement learning in continuous time and space, Neural Comput, vol.12, pp.219-245, 2000.

M. Joëls, Z. Pu, O. Wiegert, M. S. Oitzl, and H. J. Krugers, Learning under stress: how does it work?, Trends Cogn. Sci, vol.10, pp.152-158, 2006.

K. V. Kuchibhotla, Parallel processing by cortical inhibition enables context-dependent behavior, Nat. Neurosci, 2016.

P. C. Holland and J. Lamarre, Transfer of inhibition after serial and simultaneous feature negative discrimination training, Learn. Motiv, vol.15, pp.219-243, 1984.

M. Gallagher and P. C. Holland, Preserved configural learning and spatial learning impairment in rats with hippocampal damage, Hippocampus, vol.2, pp.81-88, 1992.

I. Smart and G. Mcsherry, Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes, J. Anat, vol.146, p.141, 1986.

S. Fusi, W. F. Asaad, E. K. Miller, and X. J. Wang, A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales, Neuron, vol.54, pp.319-333, 2007.

D. B. Polley, E. E. Steinberg, and M. M. Merzenich, Perceptual learning directs auditory cortical map reorganization through top-down influences, J. Neurosci, vol.26, pp.4970-4982, 2006.

J. B. Issa, Multiscale optical Ca2+ imaging of tonal organization in mouse auditory cortex, Neuron, vol.83, pp.944-959, 2014.

G. Rothschild, I. Nelken, and A. Mizrahi, Functional organization and population dynamics in the mouse primary auditory cortex, Nat. Neurosci, vol.13, pp.353-360, 2010.

D. E. Winkowski and P. O. Kanold, Laminar transformation of frequency organization in auditory cortex, J. Neurosci, vol.33, pp.1498-1508, 2013.

N. D. Daw, J. P. O'doherty, P. Dayan, B. Seymour, and R. J. Dolan, Cortical substrates for exploratory decisions in humans, Nature, vol.441, p.876, 2006.

R. A. Silver, Neuronal arithmetic, Nat. Rev. Neurosci, vol.11, pp.474-489, 2010.

H. G. Wu, Y. R. Miyamoto, L. N. Castro, B. P. Ölveczky, and M. A. Smith, Temporal structure of motor variability is dynamically regulated and predicts motor learning ability, Nat. Neurosci, vol.17, p.312, 2014.

E. C. Tolman, Cognitive maps in rats and men, Psychol. Rev, vol.55, p.189, 1948.

E. C. Tolman and C. H. Honzik, Introduction and removal of reward, and maze performance in rats, Univ. Calif. Publ. Psychology, vol.4, pp.257-275, 1930.

H. Makino and T. Komiyama, Learning enhances the relative impact of topdown processing in the visual cortex, Nat. Neurosci, vol.18, pp.1116-1122, 2015.

R. Kawai, Motor cortex is required for learning but not for executing a motor skill, Neuron, vol.86, pp.800-812, 2015.

T. M. Otchy, Acute off-target effects of neural circuit manipulations, Nature, vol.528, pp.358-363, 2015.

W. Schultz, P. Dayan, and P. R. Montague, A neural substrate of prediction and reward, Science, vol.275, pp.1593-1599, 1997.

L. Zaborszky, Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction, Cereb. Cortex, vol.25, pp.118-137, 2015.

B. Hangya, S. P. Ranade, M. Lorenc, and A. Kepecs, Central cholinergic neurons are rapidly recruited by reinforcement feedback, Cell, vol.162, pp.1155-1168, 2015.

J. W. Krakauer, A. A. Ghazanfar, A. Gomez-marin, M. A. Maciver, and D. Poeppel, Neuroscience needs behavior: correcting a reductionist bias, vol.93, pp.480-490, 2017.

Z. Annau and L. J. Kamin, The conditioned emotional response as a function of intensity of the US, J. Comp. Physiol. Psychol, vol.54, p.428, 1961.

L. Acerbi and W. J. Ma, Practical Bayesian optimization for model fitting with bayesian adaptive direct search, Proc. Adv. Neural Inf. Process. Syst, vol.30, issue.17, 2017.