A. Arash, A. Amini, . Chen, J. Peter, E. Bickel et al., Pseudo-likelihood methods for community detection in large sparse networks, The Annals of Statistics, vol.41, issue.4, pp.2097-2122, 2013.

M. Belkin and P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, Advances in neural information processing systems, pp.585-591, 2002.

T. Bonald, A. Hollocou, and M. Lelarge, Weighted spectral embedding of graphs, 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp.494-501, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01887680

K. Chaudhuri, F. Chung, and A. Tsiatas, Spectral clustering of graphs with general degrees in the extended planted partition model, Conference on Learning Theory, pp.35-36, 2012.

R. K. Fan and . Chung, Spectral graph theory, 1997.

B. Edward, C. L. Fowlkes, and . Mallows, A method for comparing two hierarchical clusterings, Journal of the American statistical association, vol.78, issue.383, pp.553-569, 1983.

C. Haruechaiyasak and C. Damrongrat, Article recommendation based on a topic model for wikipedia selection for schools, International Conference on Asian Digital Libraries, pp.339-342, 2008.

W. Paul, K. B. Holland, S. Laskey, and . Leinhardt, Stochastic blockmodels: First steps, Social networks, vol.5, issue.2, pp.109-137, 1983.

L. Hubert and P. Arabie, Comparing partitions, Journal of classification, vol.2, issue.1, pp.193-218, 1985.

A. Joseph and B. Yu, Impact of regularization on spectral clustering, The Annals of Statistics, vol.44, pp.1765-1791, 2016.

L. Nathan-de, The sparse + low rank trick for matrix factorization-based graph algorithms, Proceedings of the 15th International Workshop on Mining and Learning with Graphs (MLG), 2019.

M. Can, E. Le, R. Levina, and . Vershynin, Concentration and regularization of random graphs, Random Structures & Algorithms, vol.51, issue.3, pp.538-561, 2017.

J. Lei and A. Rinaldo, Consistency of spectral clustering in stochastic block models, The Annals of Statistics, vol.43, issue.1, pp.215-237, 2015.

U. Luxburg, A tutorial on spectral clustering, Statistics and Computing, vol.17, issue.4, pp.395-416

E. J. Mark and . Newman, Modularity and community structure in networks, Proceedings of the national academy of sciences, vol.103, pp.8577-8582, 2006.

Y. Andrew, M. I. Ng, Y. Jordan, and . Weiss, On spectral clustering: Analysis and an algorithm, Advances in neural information processing systems, pp.849-856, 2002.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

T. Qin and K. Rohe, Regularized spectral clustering under the degree-corrected stochastic blockmodel, Advances in Neural Information Processing Systems, pp.3120-3128, 2013.

A. Rosenberg and J. Hirschberg, V-measure: A conditional entropy-based external cluster evaluation measure, Proceedings of the 2007 joint conference on empirical methods in natural language processing and computational natural language learning (EMNLP-CoNLL), pp.410-420, 2007.