Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Article dans une revue

Fair Self-Adaptive Clustering for Hybrid Cellular-Vehicular Networks

Abstract : Due to the increasing number of car-centered connected services, making efficient use of limited radio resources is critical in vehicular communications. Hybrid vehicular networks dispose of multiple Radio Access Technologies (RATs) like cellular and vehicle-to-vehicle (V2V) networks, with complementary characteristics that allow for developing smarter network traffic distribution methods. This paper proposes a self-adaptive clustering system for ensuring a suitable trade-off between data aggregation (over the cellular network) and communication congestion due to cluster management (within the V2V network). The systems algorithms use a distributive justice approach for selecting cluster heads, to improve fairness among car drivers and hence help the social acceptability of self-adaptive clustering. Simulation results show that this approach significantly improves fairness over time without affecting network performance. This solution can thus optimize the usage of radio resources, reducing cellular access costs, without the need for uniformization among different mobile operators access plans.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger
Contributeur : Marceau Coupechoux Connectez-vous pour contacter le contributeur
Soumis le : vendredi 20 décembre 2019 - 11:16:22
Dernière modification le : samedi 25 juin 2022 - 21:13:38
Archivage à long terme le : : samedi 21 mars 2020 - 15:22:12


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-02421005, version 1


Julian Garbiso, Ada Diaconescu, Marceau Coupechoux, Bertrand Leroy. Fair Self-Adaptive Clustering for Hybrid Cellular-Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (2), pp.1225-1236. ⟨hal-02421005⟩



Consultations de la notice


Téléchargements de fichiers