
HAL Id: hal-02457543
https://telecom-paris.hal.science/hal-02457543

Submitted on 28 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design Space Exploration with Deterministic Latency
Guarantees for Crossbar MPSoC Architectures

Bogdan Uscumlic, Andrea Enrici, Renaud Pacalet, Amna Gharbi, Ludovic
Apvrille, Lionel Natarianni, Laurent Roullet

To cite this version:
Bogdan Uscumlic, Andrea Enrici, Renaud Pacalet, Amna Gharbi, Ludovic Apvrille, et al.. Design
Space Exploration with Deterministic Latency Guarantees for Crossbar MPSoC Architectures. 2020
IEEE International Conference on Communications (ICC): Communication Software, Services and
Multimedia Applications Symposium, Jun 2020, Dublin, Ireland. �hal-02457543�

https://telecom-paris.hal.science/hal-02457543
https://hal.archives-ouvertes.fr


Design Space Exploration with Deterministic
Latency Guarantees for Crossbar MPSoC

Architectures
Bogdan Uscumlic∗, Andrea Enrici∗, Renaud Pacalet†, Amna Gharbi†, Ludovic Apvrille†, Lionel Natarianni∗

and Laurent Roullet∗
∗Nokia Bell Labs, Paris-Saclay, France

e-mail: firstname.lastname@nokia-bell-labs.com
†LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France

e-mail: firstname.lastname@telecom-paris.fr

Abstract—MPSoC and NoC systems are often used in complex
telecommunication systems, which in the 5G era need to enable
telecommunication services with unprecedented latency char-
acteristics. Indeed, new services emerge, needing deterministic
latency guarantees with virtually no system jitter, during the
lifetime of the established telecommunication service. In this
work, for the first time, we propose an optimal solution for
a design space exploration (DSE) optimization problem, that
performs all the traditional DSE tasks, but with end-to-end
deterministic latency guarantees. We focus on MPSoC or NoC
architectures with crossbars, although this work can be easily
extended to more complex architectures. More precisely, our
contributions in this work are the following: 1) we propose
a novel method for deterministic scheduling in MPSoC and
NoC architectures with a crossbar; 2) we propose an optimal
solution in the form of an integer linear program (ILP) for
DSE problem with end-to-end deterministic latency guarantees;
3) we identify the trade-off between the latency due to the
use of crossbar time slots and the application execution time
at different processing elements. The numerical results suggest
that the proposed deterministic scheduling method can efficiently
use all 100% of the crossbar capacity, depending on available
application load and system parameters.

Index Terms—design space exploration, data communication,
linear programming, crossbar embedded system architectures.

I. INTRODUCTION

THE design space exploration (DSE) problem consists
in optimizing the allocation of application tasks to the

processing units which are part of an embedded system and
in ensuring the allocation of sufficient resources for data com-
munications. This task is very complex, but it becomes even
more difficult with the complexity of multi-processor system-
on-chip (MPSoC) and network-on-chip (NoC) systems.

Furthermore, recently a new requirement has arisen from
the need of Industry 4.0 and 5G systems: the need for
deterministic latency. Deterministic or fixed latencies, with
strict jitter limitations introduce additional requirements to
computer networks, both in optical and electronic domain, but
also to NoC and MPSoC systems. The issue of deterministic
latency was not really tackled so far in embedded system
design space exploration, as it can be seen, e.g. from [1].

Also, new technologies are currently being introduced for
facilitating automatic service deployment and orchestration in
the 5G context. The cloud-native approach is a novel paradigm
for supporting the telecommunication services in 5G architec-
tures. The key idea of this concept is to enable a joint network
and cloud infrastructure evolution, with “softwarization” of the
telecommunication infrastructure [2]. Cloud-native 5G systems
provide many advantages, such as the use of cloud infrastruc-
ture for deploying new telecommunication services, reduction
of investments, the automation, easy network update, etc.
One of the enabling technologies for cloud-native 5G systems
is network and computation acceleration, in which FPGAs
(Field-Programmable Gate Array) based transport infrastruc-
ture play an important role. In such a context, we are interested
in looking for the solutions of DSE problems that can benefit
from FPGA acceleration and that can model the deterministic
latency constraints, as required by 5G applications.

The register allocation and the instruction scheduling are the
classical DSE optimization problems in traditional compilers,
that can be assessed by using integer linear programming
[3]. These problems are NP-hard for realistic processors or
NP-complete, when reduced to graph coloring problem [4].
The mapping of applications’ tasks to processing elements
in MPSoC and NoC architectures is a DSE problem that
can be addressed by using linear programming or constraint
programming [5].

However, to the best of our knowledge, an optimal solution
of DSE problem with deterministic latency guarantees has
not been proposed so far for MPSoC or NoC systems with
crossbars. The current work, for the first time, addresses
this problem, by using a linear programming approach. We
also propose a novel method for crossbar scheduling with
deterministic traffic support, in this context.

The remainder of the document is organized as follows.
Section II provides more details about the studied hardware
platform and the assumptions about the considered DSE
problem, with a focus on deterministic latency requirements.
Section III is devoted to the related work. In Section IV we
describe our mathematical model for the optimal solution of



Fig. 1. Multi-processor system-on-chip (MPSoC) with a crossbar. Each
“node” consists from a processing element in combination with other elements
(e.g. a memory, a direct memory access (DMA) controller, etc.).

the above DSE problem based on integer linear programming
(ILP) and we detail the propossed crossbar scheduling. In
Section V we report the numerical results obtained by using
the optimal ILP solution. Finally, the concluding remarks and
the perspectives are provided in the final section.

II. CONSIDERED EMBEDDED SYSTEM ARCHITECTURES
AND DETERMINISTIC LATENCY GUARANTEES

A. Considered MPSoC and NoC architectures

The typical hardware platform that we consider is heteroge-
neous and can be composed of different hardware components.
These components are different “processing elements” (PE),
DMA controllers, memories and various interconnects (e.g.
buses, crossbars). The processing elements can be CPUs,
GPUs, FPGAs or other components. The use of crossbars is
frequent in real-time data flow embedded systems.

This is why in the present work, we focus on modeling
a MPSoC or a NoC architecture containing a crossbar. An
example of such an architecture is shown in Fig. 1, which il-
lustrates a MPSoC system composed of N “nodes” (processing
elements).

The optimal solution of the DSE problem for the system
in Fig. 1 comprises: 1) the allocation of PEs to applications’
tasks; 2) the scheduling of the tasks on the allocated PEs and
3) the crossbar scheduling of data communications between
the tasks. Furthermore, in our solution of the DSE problem,
the objective function of the optimization minimizes the end-
to-end deterministic latency for communications between the
tasks. To find such a solution, we model the behavior of the
crossbar present in the system.

The applications and their tasks are represented in the form
of Homogeneous Synchronous Data Flow (HSDF) graphs,
e.g. as shown in Fig. 2. This figure shows the applications
considered in the current work, inspired by those studied in
[5].

B. Deterministic latency guarantees

Our work, for the first time, takes into account the as-
sumption on the required end-to-end “deterministic” latency
guarantees for data communications between the applications’
tasks. Deterministic latency is actually the fixed latency for
communications between different points in a MPSoC or NoC

Fig. 2. Example of simple streaming applications presented with HSDF
graphs.

system. The guarantees for deterministic latency are usually
followed by the requirement for a “zero” jitter. “Zero” jitter
usually means that no jitter is present in the system due to
the system design or task scheduling. The only present jitter
is the one due to the physical effects that cannot be assessed.

After reviewing the related work in the following section,
in Section IV we present a mathematical model describing the
previously defined DSE problem, together with a method for
deterministic scheduling in the crossbars. Please note that our
solution with the end-to-end deterministic service guarantees
supposes that the traffic benefiting from such a service has
a deterministic time profile. In other words, we suppose that
the traffic flows exchanged between the applications’ tasks can
be represented with the periodic arrivals of equal portions of
data. In that way, at the output of the crossbar system, the
deterministic traffic profile will be preserved for each flow
traversing the system.

III. RELATED WORK

The traditional approach to the mapping of HSDF applica-
tion graphs to the processing elements consists in decoupling
the problem in two steps: assigning actors (computations)
to PEs (“spatial allocation” or “mapping”) and ordering the
execution of these actors (“temporal allocation” or “schedul-
ing”). However, the complete strategies also exist and they
aim at simultaneously retrieving the optimal solution for the
mapping and scheduling problems. These complete strategies
have the advantage of obtaining more optimized solutions
at cost of increased computational complexity. Furthermore,
such strategies are attractive for execution scenarios where a
solution is computed once and applied during a given time
window, when all the relevant characteristics (e.g. depen-
dencies, execution time of functions) are statically known
and are guaranteed not to change. These scenarios can be
relevant even for modern signal processing (e.g. 5G systems)
and multimedia applications. These applications impose, to
execution resources, workloads that dynamically evolve over
the system’s lifetime.



In this context, historically, the most well-known complete
strategy is based on linear programming. Early works are the
task partitioning with timing constraints in the SOS system [6],
[7] and the mapping in a function of the execution time, pro-
cessor and communication costs [8]. Furthermore, [9] presents
a solution for optimizing the cache memory hierarchy for
distributed real-time systems. An alternative approach to linear
programming is constraint programming (CP), considered in
[5], [10], [11]. While linear programming is more often used
to solve the spatial allocation, CP seems to be well suited to
solve the temporal allocation [12].

Approximate solutions based on heuristics were also pro-
posed. Very often, the heuristics approximate the optimal solu-
tions described by linear programming models. A comparison
of three heuristics based on genetic algorithms, simulated
annealing and tabu search is presented in [13]. Other examples
are the heuristics considering the scheduling policy [14] or
aiming to solve the mapping problem, as in [15] and [16].

More recently, the emergence of complex communication
architectures (e.g. crossbars, heterogeneous buses, NoCs) has
urged the exploration of novel design spaces. The focus of
recent work is more on NoC architectures [17], [18] with
the objective of reducing energy consumption, data-access
costs and the contention, respectively. The presented work
differentiates from the existing work as we target deterministic
crossbar based architectures, where our formulation retrieves
solutions that guarantee the respect of tight latency constraints
that are necessary for deterministic data communications.

IV. INTEGER LINEAR PROGRAMMING SOLUTION FOR THE
DSE PROBLEM WITH DETERMINISTIC LATENCY

GUARANTEES

The optimal solution of the previously defined problem is
formalized by an integer linear programming (ILP) model.
The ILP model solves the DSE problem with the end-to-
end deterministic latency guarantees (as defined in Section
II), for a given MPSoC (or NoC) architecture and for a given
set of applications. The list of input parameters to the ILP
formulation is given in Tab. I.

The MPSoC architecture is defined by a graph G(V,E)
in Tab. I, with graph vertices (nodes) that are enumerated
with positive numbers in range [0, N ]. The links connect the
MPSoC nodes with the crossbar (CB), which is supposed to
be installed at node “0” of the graph G(V,E). The bandwidth
of the links is limited to BWl. The internal bandwidth of the
crossbar is limited to BWcb.

The notion of “time slots” is introduced to model: 1) the
scheduling cycle of all processing elements (equal to S time
slots) and 2) the scheduling cycle of the crossbar (equal to Scb
time slots). The scheduling of the processing elements and of
the crossbar repeats after S and Scb time slots, respectively.
The duration of each time slot is expressed in generic “pro-
cessing time units” [p.t.]. In general case, S 6= Scb.

Each application a is represented by a HSDF graph, and
it is defined as a set of tasks. Data communication between
the tasks m and n of a given application a is described by

TABLE I
INPUT PARAMETERS

Input Definition
parameters
G(V,E) A non-directed graph of the MPSoC (NoC) architecture;

V is the set of nodes (i.e. PEs); V = {0, 1, 2, ..., N};
crossbar (CB) is installed at node “0”;
E is the set of edges (links); each link connects a node
with the crossbar (Fig. 1); path(i, j) is the set of
links between the nodes i and j (i, j ∈ V ).

BWl Total bandwidth capacity of any link l
(in arbitrary units [a.u.])

A Set of all applications a; application a is defined by a
HSDF graph and is also a set of its tasks;
if the tasks k1 and k2 from a directly communicate,
we write: “k1 → k2 = direct”

Γk,a,i Binary := 1 if the task k of the application a
is allowed to be installed at PE i, or := 0 otherwise

S Duration of the PE scheduling cycle (expressed in “time
slots” or equivalently, in “processing time units [p.t.]”)

Lk,a,i Worst case processing time (in [p.t.]) of the task k
of the application a when installed at PE i

Tm,n,a Link bandwidth (in [a.u.]) required for deterministic
data communication between the tasks m and n of the
application a (i.e. required for the “(m,n, a) traffic”)

BWcb Total bandwidth capacity (in [a.u.]) of the crossbar,
for any internal connection traversing the crossbar

Scb Duration of the crossbar’s scheduling cycle (in [p.t.]
or time slots)

Lcb(i, j) The crossbar propagation latency (in [p.t.]) between
PEs i and j

αm,n,a Number of scheduled subsequent “information slots”
(time slots carrying useful information), during a “flow
period” for the (m,n, a) traffic; “flow period” for the
(m,n, a) traffic is equal to αm,n,a + βm,n,a;
αm,n,a and βm,n,a depend on the value of Tm,n,a.

βm,n,a Number of subsequent “empty slots” (time slots
that do not carry any information), during a
“flow period” for the (m,n, a) traffic;

Fm,n,a Number of scheduled “flow periods”, during the crossbar
scheduling cycle Scb, for the (m,n, a) traffic;
obviously, Fm,n,a = Scb/(α

m,n,a + βm,n,a)
M ; ε A large constant; a small constant

four different parameters in Tab. I: Tm,n,a (for the required
link bandwidth); Fm,n,a, αm,n,a and βm,n,a (the crossbar
parameters depending on Tm,n,a). Finally, the worst case
processing time of a task k of the application a, when running
on the PE i, is equal to Lk,a,i.

In Tab. II, we provide a list of the output variables used
in the model (all the other variables not listed in Tab. II, but
used in the formulation, are binary, auxiliary variables). The
key variables are xk,ai and sk,ai , which determine which PE
is allocated to which application and the processing starting
times at different PEs, respectively.

Next, Tab. III provides the formulation constraints. In this
table and in the remainder of this paper, the following index
notation is used: i, j ∈ V/{0}, a ∈ A, σ ∈ [0, Scb − 1] and
l ∈ E (the sets and the values V , A, Scb and E are defined
in Tab. I). Please note that the solution provided by a ILP
formulation is optimal, for a specified objective function. In
our case, the objective function (eq. (1) in Tab. III) minimizes
the total end-to-end deterministic latency for each pair of tasks
that communicate directly (as defined by the HSDF graph of
the application containing these tasks). In the following, we
discuss in detail all the constraints from Tab. III.



TABLE II
OUTPUT VARIABLES

Output Definition
Variables
xk,ai Binary := 1 if the task k of the application a is installed

at PE i or := 0, otherwise
zm,n,ai,j Binary := 1 if the tasks m and n of the application a

are installed at PEs i and j (respectively)
or := 0, otherwise

sk,ai Natural, indicating the starting time slot (in the range
[1, S]) for the execution of the task k of the
application a, when k is installed at PE i;
equal to 0 if k is not installed at PE i

mσi,j Binary := 1 if the matching between input/output
ports i and j of the crossbar happens at time slot σ,
or := 0, otherwise

Bm,n,a,σ
(i,j)

/ Binaries, := 1 if the (m,n, a) traffic in the crossbar,
pm,n,a,σ
(i,j)

exchanged between PEs i and j, is transported
starting from/by using (respectively) the time slot σ
or := 0, otherwise

TABLE III
INTEGER LINEAR PROGRAMMING FORMULATION

No. Constraint
(1) Min[

∑
a

∑
(m,n)∈a2

∑
(i,j)∈(V/{0})2 (Lcb(i, j)+

Lm,a,i + Ln,a,j)z
m,n,a
i,j ]

(2)
∑
n∈a,n 6=k

∑
j z
k,n,a
i,j ≤ xk,ai M ≤ Γk,a,iM, ∀a, ∀k ∈ a,∀i

(3)
∑
m∈a,m6=k

∑
i z
m,k,a
i,j ≤ xk,aj M ≤ Γk,a,jM,∀a, ∀k ∈ a, ∀j

(4)
∑
i,j z

m,n,a
i,j = 1, ∀a, (∀(m,n) ∈ a2)(Tm,n,a 6= 0)

(5)
∑
i x
k,a
i ≤ 1, ∀a,∀k ∈ a

(6)
∑

(i,j)∈V 2:l∈path(i,j)
∑
a

∑
(m,n)∈a2 z

m,n,a
i,j Tm,n,a

≤ BWl, ∀l
(7) sk,ai ≤ xk,ai M,xk,ai ≤ sk,ai , ∀i, ∀a, ∀k ∈ a
(8) sk,ai + Lk,a,i ≤ S + 1, ∀i, ∀a, ∀k ∈ a
(9) sk1,a1i + Lk1,a1,i ≤ s

k2,a2
i +M(1− nk1,k2,a1,a2i,i )+

Mδk1,k2,a1,a2i,i , ∀i, ∀a1, ∀a2,∀k1 ∈ a1, ∀k2 ∈ a2
nk1,k2,a1,a2i1,i2

≤ xk1,a1i1
, nk1,k2,a1,a2i1,i2

≤ xk2,a2i2
,

nk1,k2,a1,a2i1,i2
≥ xk1,a1i1

+ xk2,a2i2
− 1,

sk2,a2i2
< sk1,a1i1

+M(1− δk1,k2,a1,a2i1,i2
)− ε,

sk2,a2i2
≥ sk1,a1i1

−Mδk1,k2,a1,a2i1,i2
,

∀i1, ∀i2, ∀a1, ∀a2,∀k1 ∈ a1, ∀k2 ∈ a2
(10) sk1,ai + Lk1,a,i ≤ s

k2,a
i +M(1− nk1,k2,a,ai,i ),

∀i, ∀a, (∀(k1, k2) ∈ a2)(k1 → k2 = direct)

(11) sk1,ai1
+ Lk1,ai1

+ Lcb(i1, i2) ≤ sk2,ai2
+M(1− nk1,k2,a,ai1,i2

),

(∀(i1, i2) ∈ (V/{0})2)(i1 6= i2), ∀a, (∀(k1, k2) ∈ a2)
(k1 → k2 = direct)

(12)
∑
i:i 6=j m

σ
i,j ≤ 1,∀j,∀σ;

∑
j:j 6=im

σ
i,j ≤ 1, ∀i, ∀σ

(13)
∑
a

∑
(m,n)∈a2 z

m,n,a
i,j Tm,n,a

≤
∑
σm

σ
i,j/Scb ·BWcb, ∀i, ∀j

(14)
∑
σ B

m,n,a,σ
i,j = zm,n,ai,j Fm,n,a, ∀i, ∀j,∀a, ∀(m,n) ∈ a2

(15) Bm,n,a,σ1
(i,j)

= Bm,n,a,σ2
(i,j)

,∀i, ∀j,∀a, ∀(m,n) ∈ a2

(∀σ1, ∀σ2)(σ2 ≡ σ1 + w · (αm,n,a + βm,n,a) mod Scb),
(∀w,Fm,n,a > w ≥ 0)

(16) 0 ≤ pm,n,a,σ2
(i,j)

−Bm,n,a,σ1
(i,j)

+M · γm,n,a,σ1
(i,j)

,

Bm,n,a,σ1
(i,j)

≤ 0 +M · (1− γm,n,a,σ1
(i,j)

),

∀i, ∀j,∀a,∀(m,n) ∈ a2
(∀σ1, σ2)(σ2 ≡ (σ1 + w) mod Scb), (∀w,αm,n,a > w ≥ 0)

(17)
∑
σ

∑
(i,j)∈(V/{0})2 B

m,n,a,σ
(i,j)

≤M · zm,n,ai,j ,

∀a, ∀(m,n) ∈ a2
(18)

∑
a

∑
(m,n)∈a2 p

m,n,a,σ
(i,j)

≤ mσi,j , ∀σ,∀i, ∀j

A. Constraints ensuring the allocation of PEs

The constraint (2) ensures that tasks and applications can
be installed only at the allowed subsets of PEs (these subsets
are defined by the input parameters “Γk,a,i”). The constraint
holds for each task that is an origin (i.e. a “source”) of data
communication towards some other task in a HSDF graph. The
constraint (3) has the same role as the previous constraint, but
it holds for the tasks receiving some traffic from some other
tasks in HSDF graphs.

Next, for a given pair of tasks (m,n) that are directly con-
nected in the HSDF graph of a given application a (resulting in
Tm,n,a 6= 0), there must exist only a single pair of processing
elements i, j (on the MPSoC chip), to which the tasks m and
n are allocated, respectively. This property is ensured by the
constraint (4).

The constraint (5) ensures that at most one PE can be
allocated to a given task and a given application. Finally, to
limit the capacity of data communications over each link in
MPSoC, we use the constraint (6).

So far, the constraints were dealing with properly allocating
PEs to applications’ tasks. These constraints provide the basic
limitations on the PE allocation variables: xk,ai and zm,n,ai,j .
Next, we address the scheduling of tasks on PEs.

B. Constraints for the scheduling of tasks on PEs

The key variable defining the scheduling of tasks on PEs
in MPSoC is sk,ai . This variable defines the starting time of
execution of the task k (of the application a) at PE i. To
simplify the constraints, the possible values of sk,ai are situated
in the range [1, S].

The function of the following constraint, (7), is to connect
the variables xk,ai and sk,ai . Indeed, xk,ai and sk,ai can both be
different than 0, but only simultaneously. The constraint (8),
provided next, make sure that the total execution time of each
task at a given PE is not greater than the end of the scheduling
period S.

The constraints also need to address the case when tasks of
different applications share the same PE. This is achieved by
the constraint (9). For proper functioning of the constraint, the
following two conditions need to be satisfied: 1) the inequality
connecting the variables sk,ai needs to take into account the
order of their scheduling on the PE (this is achieved by
introducing the auxiliary decision variable δk1,k2,a1,a2i,i ); 2) the
condition can be enforced only if the allocation of PEs to
applications’ tasks also holds (this is achieved by introducing
the auxiliary decision variable nk1,k2,a1,a2i,i ).

Next, when scheduling two tasks of the same application
on the same PE, if the tasks “directly communicate”1, the task
that is the origin of direct communication shall be executed
first, which is enabled by the constraint (10). Similarly, the
inequality (11) is needed to set the scheduling relation between
different tasks of a given application.



Fig. 3. Crossbar architecture with the periodic scheduling model (with
scheduling period Scb). α(i) and β(i) correspond to “(mi, ni, ai) traffic”,
i.e. they define αmi,ni,ai and βmi,ni,ai .

C. Model and constraints for the crossbar scheduling

The architecture of the crossbar is shown in Fig. 3. We
suppose that the crossbar operates in discrete time slots. The
scheduling in the crossbar repeats after the scheduling cycle of
Scb time slots. Each time slot is allocated to one pair of input-
output links. The bandwidth available during the input-output
interconnection traversing the crossbar is equal to BWcb. Time
slot allocation is always performed in a way that satisfies the
matching condition of the crossbar. “Matching” is a crossbar
configuration property according to which no more than a
single output can be connected to any single input (and vice
versa), at any given time.

Data communications are supposed to be periodic (deter-
ministic), as in Fig. 3. The scheduling in the crossbar allows
to multiplex different applications’ tasks at each PE connected
to the crossbar. When multiplexing data, the size of “flow
periods” of different data flows must correspond to the value of
Scb. Indeed, the “flow period” (defined in Tab. I) for (m,n, a)
traffic flow is equal to αm,n,a + βm,n,a. This is why, in order
to ensure a feasible solution for the crossbar scheduling, we
suppose that Scb is equal to the least common multiple of all
flow periods αm1,n1,a1 +βm1,n1,a1 , αm2,n2,a2 +βm2,n2,a2 , ...,
etc.

In the formulation, the constraint (12) is introduced to en-
force the matching condition in the crossbar. The capacity con-
straint (13) limits the total available capacity for transport of
deterministic data communications. The constraints (14)-(16)
are the scheduling constraints, calculating the key scheduling
variables Bm,n,a,σ(i,j) and pm,n,a,σ(i,j) . Finally, to connect different
variables describing the crossbar and the PE allocation process,
we introduce the constraints (17) and (18).

Please note that the previously defined DSE problem be-
comes equivalent to traditional processor allocation problem
for N = 3. The latter problem is generally considered to be
NP-hard for the objective functions that optimize applications’
performances [1], so it can be considered that our DSE
problem has the same computational complexity.

1“Direct communication” relates to the presence of a connecting arrow in
HSDF graph.

Fig. 4. A motivating example: the crossbar architecture for N = 2

V. NUMERICAL RESULTS

We have implemented the previous ILP formulation in the
IBM CPLEX software. In this section we report the optimal
results of simulations, for various application assumptions.

A. The application assumptions

We consider a motivating example and three application
scenarios. In the following, we describe the application as-
sumptions for the scenarios 1, 2 and 3, while the motivating
example has slightly different assumptions. All the values
chosen here are for illustration purpose, and can be changed
for different set of applications and PEs. We suppose that
Γk,a,i = 1 (∀k, ∀a,∀i) and Lcb(i, j) = 2 p.t. (∀i,∀j), which
corresponds to the latency of CB. Next, N = 4, Scb = 8 p.t.,
BWl = 1.2 Gbit/s and BWcb = 133 Mbit/s.

The capacity vm,n,a of each (m,n, a) traffic flow is written
next to the corresponding link in Fig. 2. In this figure,
value of vm,n,a is given in (crossbar) time slots. The link
bandwidth required for the (m,n, a) traffic flow is then equal
to Tm,n,a = vm,n,a/Scb · BWcb. Other assumptions on the
considered applications (from Fig. 2) are summarized in Tab.
IV. We consider the following three application scenarios:

1) Scenario 1. Linear combination of applications A and
B. We consider that S = 10. The application load
increases and the results are calculated for the points
{B,A+B,A+2B, 2A+2B, ...} This scenario illustrates
the achievable crossbar time slot occupancy (i.e. the
average percentage of occupied crossbar time slots over
the active input-output connections).

2) Scenario 2. Fixed application load of 2A+2B. For such
fixed application load, we increase the value of S,
starting from S = 10 (we increase the computational
power of PEs), to study the dependency of the optimal
solution and the crossbar time slot occupancy from the
available processing power in the system.

3) Scenario 3. Randomly chosen application load from
the set {A,B,C,D,E}. For S = 17, the application
load is randomly generated out of the applications from
Fig. 2. This scenario illustrates the behavior of the
scheduling and the PE allocation process in case of
random application load.

B. Motivating example: 3-node crossbar architecture

First, for illustration purposes, we consider a simple cross-
bar system composed of three nodes (N = 2), as in Fig. 4. The
applications to be allocated in this system are the applications
A and B from Fig. 2, with the same assumptions as in Tab.
IV. The size of scheduling cycle on any PE is supposed to be
S = 5 p.t., while Scb and all the other parameters have the
same values as in Scenarios 1, 2 and 3.



TABLE IV
ASSUMPTIONS ON APPLICATIONS IN FIG. 2

Appli- Assumptions (all values are in “time slots” or [p.t.];
cation: CB is installed at the node defined by i = 0 ):
A LA1,A,1 = 1, (∀i)(i 6= 1)(LA1,A,i = LA1,A,1 + 2)

LA2,A,1 = 4, (∀i)(i ≥ 1, i ≤ 3)(LA2,A,i = LA2,A,1),
(∀i)(i > 3)(LA2,A,i = LA2,A,1 + 2)
FA1,A2,A = 2, αA1,A2,A = 1, βA1,A2,A = 3
LA3,A,4 = 2, (∀i)(i ≥ 4, i ≤ N)(LA3,A,i = LA3,A,4),
(∀i)(i < 4)(LA3,A,i = LA3,A,4 + 5)
FA1,A3,A = 4, αA1,A3,A = 1, βA1,A3,A = 1

B LB1,B,4 = 2, (∀i)(i ≥ 4, i ≤ N)(LB1,B,i = LB1,B,4),
(∀i)(i < 4)(LB1,B,i = LB1,B,4 + 2)
LB2,B,4 = 1, (∀i)(i ≥ 4, i ≤ N)(LB2,B,i = LB2,B,4),
(∀i)(i < 4)(LB2,B,i = LB2,B,4 + 2)
FB1,B2,B = 1, αB1,B2,B = 3, βB1,B2,B = 5

C LC1,C,1 = 2, (∀i)(i 6= 1)(LC1,C,i = LC1,C,1 + 2)
LC2,C,2 = 1, (∀i)(i 6= 2)(LC2,C,i = LC2,C,2 + 2)
FC1,C2,C = 4, αC1,C2,C = 1, βC1,C2,C = 1
LC3,C,2 = 1, (∀i)(i 6= 2)(LC3,C,i = LC3,C,2 + 3)
FC1,C3,C = 4, αC1,C3,C = 1, βC1,C3,C = 1
LC4,C,2 = 1, (∀i)(i 6= 2)(LC4,C,i = LC4,C,2 + 3)
FC2,C4,C = 1, αC2,C4,C = 1, βC2,C4,C = 7
FC3,C4,C = 1, αC3,C4,C = 1, βC3,C4,C = 7

D (∀i)(LD1,D,i = 1, LD2,D,i = 6)
FD1,D2,D = 1, αD1,D2,D = 1, βD1,D2,D = 7
(∀i)(LD3,D,i = 4, LD4,D,i = 1)
FD2,D3,D = 2, αD2,D3,D = 1, βD2,D3,D = 3
FD3,D4,D = 1, αD3,D4,D = 1, βD3,D4,D = 7

E (∀i)(LE1,E,i = 2, LE2,E,i = 1)
FE1,E2,E = 2, αE1,E2,E = 1, βE1,E2,E = 3
LE3,E,3 = 3, (∀i)(i 6= 3)(LE3,E,i = LE3,E,3 + 5)
FE2,E3,E = 2, αE2,E3,E = 1, βE2,E3,E = 3
LE4,E,1 = 1, (∀i)(i 6= 1)(LE4,E,i = LE4,E,1 + 5)
FE3,E4,E = 4, αE3,E4,E = 1, βE3,E4,E = 1
(∀i)(LE5,E,i = 2, LE6,E,i = 2, LE7,E,i = 1)
FE4,E5,E = 2, αE4,E5,E = 1, βE4,E5,E = 3
FE5,E6,E = 1, αE5,E6,E = 3, βE5,E6,E = 5
FE6,E7,E = 1, αE6,E7,E = 1, βE6,E7,E = 7
FE1,E7,E = 1, αE1,E7,E = 1, βE1,E7,E = 7
FE1,E5,E = 1, αE1,E5,E = 1, βE1,E5,E = 7
FE4,E6,E = 1, αE4,E6,E = 1, βE4,E6,E = 7

Fig. 5. The resulting scheduling on PEs in the motivating example

The resulting scheduling on PEs in this example is shown
in Fig. 5. The value of the objective function (the end-to-
end deterministic latency) is equal to 13 p.t. (indeed, the
overall latencies for traffic flows (A1, A2, A), (A1, A3, A) and
(B1, B2, B) are 5, 5 and 3 p.t., respectively). The traffic flow
(A1, A3, A) is routed over the crossbar. The results show that
the crossbar latency between the tasks A1 and A3 has been
properly taken into account.

C. Results for a crossbar architecture with N = 4

Next, Scenarios 1, 2 and 3 are considered in a larger
MPSoC, composed of five nodes (i.e. for N = 4 in Fig. 1).

1) Scenario 1: The simulation results are provided in Fig.
6, for linearly increasing application load. The figure shows

Fig. 6. Scenario 1: total end-to-end deterministic latency and CB slot
occupancy for a linearly increasing traffic load

Fig. 7. Scenario 2: total end-to-end deterministic latency and CB slot
occupancy for a fixed traffic load

Fig. 8. Scenario 3: total end-to-end deterministic latency and CB slot
occupancy for a random traffic load

the increase of the objective function value (the end-to-end
deterministic latency) with the increase of the scheduled load.
One of the key results is that the crossbar slots can be highly



occupied (up to 100%), for sufficiently high data commu-
nication loads. This confirms the efficiency of the proposed
deterministic scheduling method for the slot allocation in the
crossbar. These results also identify a trade-off between the use
of crossbar’s time slots (which introduces the crossbar transit
latency) and the use of processing elements’ time slots.

2) Scenario 2: In order to further explore the trade-off be-
tween the use of thecrossbar and PEs in MPSoC architecture,
we test Scenario 2 in the same five-node MPSoC topology.

The simulation results are provided in Fig. 7. We observe
what happens with the increase of the computational power
of PEs. We mimick the computational power increase with
the increase of the scheduling cycle S for a fixed application
load (indeed, without changing the values of tasks’ processing
times Lk,a,i, the increase of S is equivalent to the increase of
PE’s computational capacity).

Fig. 7 clearly shows that the increase of computational
power of processing elements results in:

• the decrease of the objective function value; indeed, the
increase of the computational power of PEs allows to
tasks to use “cheaper” processing elements, i.e. those that
are more efficient in terms of latency.

• the decrease of the crossbar time slot occupancy; indeed,
this is another expected outcome, since the use of crossbar
is penalized by the crossbar latency (supposed to be 2 p.t.
in this example), so the crossbar will be used only when
needed.

3) Scenario 3: Finally, in Scenario 3, we increase the total
application load in the system. Furthermore, the applications
are randomly generated, to test the behavior of the scheduling
and the PE allocation process for a randomly generated
application matrix.

The results are summarized in Fig. 8. The found values of
the end-to-end deterministic latency are higher in this case,
because the maximum application load is greater than in the
previous scenarios. The time slots in the crossbar are used
up to 37.5 %, with tendency of increased time slot use at
higher loads. Indeed, for lower application loads, there are
still available time slots at latency-efficient PEs, so the use of
crossbar is not required. This trend does not differ in linear
and random load scenario. Furthermore, such behavior once
again confirms the trade-off between the use of time slots in
the crossbar and at processing elements.

VI. CONCLUSIONS AND PERSPECTIVES

We have proposed an optimal solution for the DSE problem
in a crossbar MPSoC system. Our solution and scheduling
model for the first time provide end-to-end deterministic
latency guarantees in such a context. The optimal solution of
DSE problem is based on an integer linear program. The new
optimization problem has a high computational complexity.

We have identified a trade-off between the use of crossbar’s
time slots for supporting data communications and the use of
processing elements’ time slots. Since the crossbar introduces
latency, the optimal solution will use the crossbar time slots
as needed, and in a proportion corresponding to the relative

“cost” of crossbar communication latency and processing
latency at different processing elements.

By using the proposed optimal solution as a benchmark, an
approximate heuristic algorithm can be developed, that would
be able to solve large instances of the problem, in a minimum
computation time. The development of such a solution is left
for future work. Such approximate algorithm could be then
used in the context of accelerated processing with determinis-
tic latency guarantees in cloud-native 5G systems.

REFERENCES

[1] A. D. Pimentel, “Exploring Exploration: A Tutorial Introduction to
Embedded Systems Design Space Exploration,” in IEEE Design & Test,
vol. 34, no. 1, pp. 77-90, Feb. 2017.

[2] 5G-PPP Software Network Working Group, “From Webscale to Telco,
the Cloud Native Journey”, Overall Editor: Bessem Sayadi, July
2018, https://5g-ppp.eu/wp-content/uploads/2018/07/5GPPP-Software-
Network-WG-White-Paper-23052018-V5.pdf, accesed on September 02,
2019

[3] Chia-Ming Chang, Chien-Ming Chen, Chung-Ta King, “Using integer
linear programming for instruction scheduling and register allocation in
multi-issue processors”, Computers & Mathematics with Applications,
Volume 34, Issue 9, 1997, Pages 1-14, ISSN 0898-1221

[4] Shlomit S. Pinter, “Register allocation with instruction schedul-
ing.” In Proceedings of the ACM SIGPLAN 1993 conference
on Programming language design and implementation (PLDI ’93),
Robert Cartwright (Ed.). ACM, New York, NY, USA, 248-257.
DOI=http://dx.doi.org/10.1145/155090.155114

[5] K. Rosvall and I. Sander,: A constraint-based design space exploration
framework for real-time applications on MPSoCs. In: DATE, 6 pages,
2014.

[6] S.Prakashand, A. Parker,: SOS: Synthesis of Application Specific Hetero-
geneous Multiprocessor Systems. In: Journal of Parallel and Distributed
Computing, pp. 338 - 351, 1992.

[7] C. Lee, M. Potkonjak and W. Wolf,: System-Level Synthesis of
Application-Specific Systems Using A Search and Generalized Force-
Directed Heuristics. In: ISSS, pp. 2 - 7, 1996.

[8] A. Bender,: MILP based Task Mapping for Heterogeneous Multiprocessor
Systems. In: EURO-DAC, pp.190 - 197, 1996.

[9] Y. Liand, W. H. Wolf,: Hardware/Software Co-Synthesis with Memory
Hierarchies. In: IEEE Trans. On Computer-Aided Design of Integrated
Circuits and Systems, pp. 1405 - 1417, 1999.

[10] A. Bonfietti, M. Lombardi, M. Milano, and L. Benini,: Maximum-
throughput mapping of SDFGs on multi-core SoC platforms. J. Parallel
Distrib. Comput. Vol. 73, n. 10, pp. 1337-1350, 2013.

[11] K. Kuchcinski,: Embedded System Synthesis by Timing Constraint
Solving. In: IEEE Transactions on CAD, pp. 537 - 551, 1994.

[12] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti and M. Milano,
”Communication-aware allocation and scheduling framework for stream-
oriented multi-processor systems-on-chip,”. In: DATE, pp. 6, 2006.

[13] J. Axelsson: Architecture Synthesis and Partitioning of Real-Time
Synthesis: a Comparison of 3 Heuristic Search Strategies. In:
CODES/CASHE, pp. 161 - 166, 1997

[14] P. Eles, Z. Peng, K. Kuchcinski, A. Doboliand, P .Pop,: Scheduling of
Conditional Process Graphs for the Synthesis of Embedded Systems. In:
DATE, pp. 132 - 139, 1998

[15] F. Guderian, R. Schaffer and G. Fettweis: ”Administration- and
communication-aware IP core mapping in scalable multiprocessor system-
on-chips via evolutionary computing,” 2012 IEEE Congress on Evolution-
ary Computation, Brisbane, QLD, 2012, pp. 1-8.

[16] J. Lin, A. Gerstlauer, and B. L. Evans: Communication-aware Hetero-
geneous Multiprocessor Mapping for Real-time Streaming Systems. J.
Signal Process. Syst. Vol. 69, n. 3, 2012

[17] C.-L. Chou and R. Marculescu, ”Contention-aware application mapping
for Network-on-Chip communication architectures,”. In: ICCD, pp. 164
- 16, 2008.

[18] I. Akturk and O. Ozturk, ”ILP-Based Communication Reduction for Het-
erogeneous 3D Network-on-Chips,” 2013 21st Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing,
Belfast, pp. 514-518, 2013.


