A. Bellet and A. Habrard, Robustness and Generalization for Metric Learning, Neurocomputing, vol.151, issue.1, pp.259-267, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01075370

A. Bellet, A. Habrard, and M. Sebban, Metric Learning, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01121733

O. Bousquet, S. Boucheron, and G. Lugosi, Introduction to statistical learning theory, Advanced Lectures on Machine Learning, pp.169-207, 2004.

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees, 1984.

Q. Cao, Z. Guo, and Y. Ying, Generalization Bounds for Metric and Similarity Learning, Machine Learning, vol.102, pp.115-132, 2016.

G. Clémençon, M. Depecker, and N. Vayatis, Ranking Forests, J. Mach. Learn. Res, vol.14, pp.39-73, 2013.

S. Clémençon, M. Depecker, and N. Vayatis, Adaptive partitioning schemes for bipartite ranking

S. Clémençon and N. Vayatis, Tree-based ranking methods, IEEE Transactions on Information Theory, vol.55, issue.9, pp.4316-4336, 2009.

S. Clémençon, G. Lugosi, and N. Vayatis, Ranking and Empirical Minimization of U-Statistics, The Annals of Statistics, vol.36, issue.2, pp.844-874, 2008.

T. Fawcett, An Introduction to ROC Analysis, Letters in Pattern Recognition, vol.27, pp.861-874, 2006.

J. Huo, Y. Gao, Y. Shi, and H. Yin, Cross-modal metric learning for auc optimization, IEEE Transactions on Neural Networks and Learning Systems, issue.99, pp.1-13, 2018.

A. Jain, L. Hong, and S. Pankanti, Biometric identification. Communications of the, vol.43, pp.90-98, 2000.

A. K. Jain, A. Ross, and S. Prabhakar, An introduction to biometric recognition, IEEE Transactions on Circuits and Systems for Video Technology, vol.14, pp.4-20, 2004.

L. Jain, B. Mason, and R. Nowak, Learning Low-Dimensional Metrics, NIPS, 2017.

R. Jin, S. Wang, and Y. Zhou, Regularized Distance Metric Learning: Theory and Algorithm, NIPS, 2009.

B. Kulis, Metric Learning: A Survey. Foundations and Trends in Machine Learning, vol.5, pp.287-364, 2012.

A. J. Lee, U -statistics: Theory and practice, 1990.

B. Mcfee and G. R. Lanckriet, Metric Learning to Rank, ICML, 2010.

J. Quinlan, Induction of Decision Trees, Machine Learning, vol.1, issue.1, pp.1-81, 1986.

N. Verma and K. Branson, Sample complexity of learning mahalanobis distance metrics, NIPS, 2015.

R. Vogel, S. Clémençon, and A. Bellet, A Probabilistic Theory of Supervised Similarity Learning: Pairwise Bipartite Ranking and Pointwise ROC Curve Optimization, ICML, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02288518

K. Q. Weinberger and L. K. Saul, Distance Metric Learning for Large Margin Nearest Neighbor Classification, Journal of Machine Learning Research, vol.10, pp.207-244, 2009.