J. Urbano, Evaluation in Audio Music Similarity, 2013.

A. Van-den-oord, S. Dieleman, and B. Schrauwen, Deep content-based music recommendation, Proc. of NIPS, 2013.

H. Chen and A. Chen, A music recommendation system based on music data grouping and user interests, Proc of ACM CIKM, pp.231-238, 2001.

A. Andrew-i-schein, . Popescul, H. Lyle, D. M. Ungar, and . Pennock, Methods and metrics for cold-start recommendations, Proc. of SIGIR, 2002.

S. Clifford, Pandora's Long Strange Trip

K. Choi, G. Fazekas, and M. Sandler, Automatic tagging using deep convolutional neural networks, Proc. of ISMIR, 2016.

J. Aucouturier and F. Pachet, Finding Songs That Sound The Same, Proc. of IEEE Benelux Workshop on Model based Processing and Coding of Audio, 2002.

B. Mcfee, J. Salamon, and J. P. Bello, Adaptive pooling operators for weakly labeled sound event detection, IEEE/ACM Transactions on Audio, Speech and Language Processing, vol.26, issue.11, pp.2180-2193, 2018.

D. Eck, P. Lamere, T. Bertin-mahieux, and S. Green, Automatic Generation of Social Tags for Music Recommendation, Proc. of NIPS, 2008.

M. G. Yandre, L. S. Costa, C. N. Oliveira, and . Silla, An evaluation of Convolutional Neural Networks for music classification using spectrograms, Applied Soft Computing Journal, vol.52, pp.28-38, 2017.

S. Dieleman and B. Schrauwen, End-to-end learning for music audio, Proc. of ICASSP, 2014.

J. Pons, O. Nieto, M. Prockup, E. M. Schmidt, A. F. Ehmann et al., End-to-end learning for music audio tagging at scale, Proc. of ISMIR, 2018.

J. Pons, O. Slizovskaia, R. Gong, E. Gómez, and X. Serra, Timbre analysis of music audio signals with convolutional neural networks, Proc. of EUSIPCO, 2017.

K. Choi, G. Fazekas, and M. Sandler, Explaining Deep Convolutional Neural Networks on Music Classification, 2016.

N. Usunier, D. Buffoni, and P. Gallinari, Ranking with ordered weighted pairwise classification, Proc. of ICML, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01297974

Q. Kilian, L. Weinberger, and . Saul, Distance metric learning for large margin nearest neighbor classification, Journal of Machine Learning Research, vol.10, pp.207-244, 2009.

E. Hoffer and N. Ailon, Deep metric learning using triplet network, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, vol.9370, pp.84-92, 2015.

F. Schroff and J. Philbin, FaceNet: A Unified Embedding for Face Recognition and Clustering, Proc of CVPR, 2015.

A. Hermans, L. Beyer, and B. Leibe, Defense of the Triplet Loss for Person Re-Identification, 2017.

B. Mcfee and G. Lanckriet, Metric Learning to Rank, Proc of ICML, 2010.

J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang et al., Learning Fine-grained Image Similarity with Deep Ranking, Proc of CVPR, 2014.

D. Wolff and T. Weyde, Learning music similarity from relative user ratings, Information Retrieval, vol.17, issue.2, pp.109-136, 2014.

M. Slaney, K. Weinberger, and W. White, Learning a Metric for Music Similarity, Proc. of ISMIR, 2008.

J. Weston, S. Bengio, and P. H. Google, Large-Scale Music Annotation and Retrieval : Learning to Rank in Joint Semantic Spaces, 2011.

R. Lu, K. Wu, Z. Duan, and C. Zhang, Deep ranking: Triplet MatchNet for music metric learning, Proc. of ICASSP, 2017.

E. Law, K. West, M. Mandel, and M. Stephen-downie, Evaluation of Algorithms Using Games: The Case of Music Tagging, Proc. of ISMIR, 2009.

R. Manmatha, . Chao-yuan, A. J. Wu, P. Smola, and . Krahenbuhl, Sampling Matters in Deep Embedding Learning, Proc. of ICCV, 2017.

S. Dieleman, Recommending music on Spotify with deep learning, 2014.

A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas, Working hard to know your neighbor's margins: Local descriptor learning loss, Proc. of NIPS, 2017.

G. Doras and G. Peeters, Cover Detection Using Dominant Melody Embeddings, Proc. of ISMIR, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02457735