J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, Recommender systems survey, vol.46, pp.109-132, 2013.

M. Norha, C. Villegas, J. Sánchez, G. Díaz-cely, and . Tamura, Characterizing context-aware recommender systems: A systematic literature review, Knowledge-Based Systems, vol.140, pp.173-200, 2018.

K. Haruna, A. Ismail, S. Suhendroyono, D. Damiasih, A. Pierewan et al., Context-aware recommender system: a review of recent developmental process and future research direction, Applied Sciences, vol.7, issue.12, p.1211, 2017.

C. Adrian, D. North, and . Hargreaves, Situational influences on reported musical preference, Psychomusicology: A Journal of Research in Music Cognition, vol.15, issue.1-2, p.30, 1996.

E. Alinka, A. Greasley, and . Lamont, Exploring engagement with music in everyday life using experience sampling methodology, Musicae Scientiae, vol.15, issue.1, pp.45-71, 2011.

G. Prassas, C. Katherine, O. Pramataris, G. Papaemmanouil, and . Doukidis, A recommender system for online shopping based on past customer behaviour, Proceedings of the 14th BLED Electronic Commerce Conference, 2001.

V. Subramaniyaswamy, M. Logesh, A. Chandrashekhar, V. Challa, and . Vijayakumar, A personalised movie recommendation system based on collaborative filtering, International Journal of High Performance Computing and Networking, vol.10, issue.1-2, pp.54-63, 2017.

K. Yadati, C. Liem, M. Larson, and A. Hanjalic, On the automatic identification of music for common activities, Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, 2017.

X. Wang, D. Rosenblum, and Y. Wang, Context-aware mobile music recommendation for daily activities, Proceedings of the 20th ACM international conference on Multimedia, 2012.

C. Chen, P. Lamere, M. Schedl, and H. Zamani, Recsys challenge 2018: Automatic music playlist continuation, Proceedings of the 12th ACM Conference on Recommender Systems, 2018.

K. Choi, G. Fazekas, K. Cho, and M. Sandler, The effects of noisy labels on deep convolutional neural networks for music tagging, IEEE Transactions on Emerging Topics in Computational Intelligence, vol.2, issue.2, pp.139-149, 2018.

M. Gillhofer and M. Schedl, Iron maiden while jogging, debussy for dinner?, International Conference on Multimedia Modeling, 2015.

Z. Cheng and J. Shen, Just-for-me: an adaptive personalization system for location-aware social music recommendation, Proceedings of international conference on multimedia retrieval, 2014.

B. Wu, Z. Liu, S. Wang, B. Hu, and Q. Ji, Multi-label learning with missing labels, Proceedings of 22nd International Conference on Pattern Recognition, 2014.

W. Bi, T. James, and . Kwok, Multilabel classification with label correlations and missing labels, Proceedings of 28th AAAI Conference on Artificial Intelligence, 2014.

M. Xu, G. Niu, B. Han, I. W. Tsang, Z. Zhou et al., Matrix co-completion for multi-label classification with missing features and labels, 2018.

M. Zhi-fen-he, Y. Yang, H. Gao, Y. Liu, and . Yin, Joint multi-label classification and label correlations with missing labels and feature selection, Knowledge-Based Systems, vol.163, pp.145-158, 2019.

J. Huang, F. Qin, X. Zheng, Z. Cheng, Z. Yuan et al., Improving multi-label classification with missing labels by learning labelspecific features, Information Sciences, vol.492, pp.124-146, 2019.

T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, Focal loss for dense object detection, Proceedings of the IEEE International Conference on Computer Vision (ICCV, 2017.

M. Sankaran-panchapagesan, A. Sun, S. Khare, A. Matsoukas, B. Mandal et al., Multi-task learning and weighted cross-entropy for dnn-based keyword spotting, Proceddings of Interspeech, 2016.

,. E. Martin-pichl, G. Zangerle, and . Specht, Towards a Context-Aware Music Recommendation Approach: What is Hidden in the Playlist Name?, Proceddings of International Conference on Data Mining Workshop (ICDMW), 2015.

M. Kaminskas and F. Ricci, Contextual music information retrieval and recommendation: State of the art and challenges, Computer Science Review, vol.6, issue.2-3, pp.89-119, 2012.

K. Choi, G. Fazekas, and M. Sandler, Automatic tagging using deep convolutional neural networks, 2016.

O. Jordi-pons-puig, M. Nieto, E. M. Prockup, A. F. Schmidt, X. Ehmann et al., End-to-end learning for music audio tagging at scale, Proceedings of the 19th International Society for Music Information Retrieval Conference, ISMIR, 2018.

K. Sechidis, On the stratification of multi-label data, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2011.

G. Tsoumakas and I. Katakis, Multi-label classification: An overview, International Journal of Data Warehousing and Mining (IJDWM), vol.3, issue.3, pp.1-13, 2007.

J. Ramos, Using tf-idf to determine word relevance in document queries, Proceedings of the first instructional conference on machine learning, 2003.