M. Carvalho, W. Cirne, F. Brasileiro, and J. Wilkes, Long-term slos for reclaimed cloud computing resources, Proceedings of the ACM Symposium on Cloud Computing, pp.1-13, 2014.

J. Dartois, A. Knefati, J. Boukhobza, and O. Barais, Using quantile regression for reclaiming unused cloud resources while achieving sla, IEEE International Conference on Cloud Computing Technology and Science, pp.89-98, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01898438

C. Delimitrou and C. Kozyrakis, Quasar: resource-efficient and qosaware cluster management, ACM SIGARCH Computer Architecture News, pp.127-144, 2014.

J. Dartois, H. B. Ribeiro, J. Boukhobza, and O. Barais, Cuckoo: Opportunistic mapreduce on ephemeral and heterogeneous cloud resources, IEEE 12th International Conference on Cloud Computing, pp.396-403, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02179453

Y. Zhang, G. Prekas, G. M. Fumarola, M. Fontoura, Í. Goiri et al., History-based harvesting of spare cycles and storage in large-scale datacenters, 12th USENIX Symposium on Operating Systems Design and Implementation, pp.755-770, 2016.

M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica, Improving mapreduce performance in heterogeneous environments, 8th USENIX Symposium on Operating Systems Design and Implementation, p.7, 2008.

K. Chen, J. Powers, S. Guo, and F. Tian, Cresp: Towards optimal resource provisioning for mapreduce computing in public clouds, IEEE Transactions on Parallel and Distributed Systems, pp.1403-1412, 2014.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, The hadoop distributed file system, IEEE 26th symposium on Mass Storage Systems and Technologies, pp.1-10, 2010.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, Spark: Cluster computing with working sets, HotCloud, p.95, 2010.

Y. Yan, Y. Gao, Y. Chen, Z. Guo, B. Chen et al., Trspark: Transient computing for big data analytics, Proceedings of the Seventh ACM Symposium on Cloud Computing, pp.484-496, 2016.

Y. Yang, G. Kim, W. W. Song, Y. Lee, A. Chung et al., Pado: A data processing engine for harnessing transient resources in datacenters, Proceedings of the Twelfth European Conference on Computer Systems, pp.575-588, 2017.

J. Dean and S. Ghemawat, Mapreduce: simplified data processing on large clusters, Communications of the ACM, pp.107-113, 2008.

, Apache hadoop 3.0.0, hdfs architecture, 2019.

H. Zhang, H. Xu, and W. Peng, A genetic algorithm for solving rcpsp, 2008 international symposium on computer science and computational technology, pp.246-249, 2008.

C. Tsai and J. J. Rodrigues, Metaheuristic scheduling for cloud: A survey, IEEE Systems Journal, pp.279-291, 2013.

R. Barták, M. A. Salido, and F. Rossi, New trends in constraint satisfaction, planning, and scheduling: a survey, The Knowledge Engineering Review, pp.249-279, 2010.

, Cp optimizer, IBM ILOG, 2019.

F. Glover and M. Laguna, Tabu search, Handbook of combinatorial optimization, pp.2093-2229, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02309983

E. K. Burke and Y. Bykov, The late acceptance hill-climbing heuristic, European Journal of Operational Research, pp.70-78, 2017.

K. Deb and H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints, IEEE Transactions on Evolutionary Computation, pp.577-601, 2013.

B. L. Miller and D. E. Goldberg, Genetic algorithms, tournament selection, and the effects of noise, Complex systems, pp.193-212, 1995.

P. Moscato, On genetic crossover operators for relative order preservation, C3P Report, 1989.

J. J. Durillo and A. J. Nebro, jmetal: A java framework for multiobjective optimization, Advances in Engineering Software, pp.760-771, 2011.

G. De, Smet and open source contributors, OptaPlanner User Guide, Red Hat, Inc. or third-party contributors, 2006.

E. Sammer, Hadoop operations, 2012.

J. C. Anjos, I. Carrera, W. Kolberg, A. L. Tibola, L. B. Arantes et al., Mra++: Scheduling and data placement on mapreduce for heterogeneous environments, Future Generation Computer Systems, pp.22-35, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01197424

J. Dartois, J. Boukhobza, A. Knefati, and O. Barais, Investigating machine learning algorithms for modeling ssd i/o performance for container-based virtualization, IEEE transactions on cloud computing, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02013421

D. Boukhelef, K. Boukhalfa, J. Boukhobza, H. Ouarnoughi, and L. Lemarchand, Cops: Cost based object placement strategies on hybrid storage system for dbaas cloud, 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp.659-664, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01557979

D. Boukhelef, J. Boukhobza, K. Boukhalfa, H. Ouarnoughi, and L. Lemarchand, Optimizing the cost of dbaas object placement in hybrid storage systems, Future Generation Computer Systems, pp.176-187, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02023420

S. A. Javadi, A. Suresh, M. Wajahat, and A. Gandhi, Scavenger: A black-box batch workload resource manager for improving utilization in cloud environments, Proceedings of the ACM Symposium on Cloud Computing, pp.272-285, 2019.