S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. D. Bullmore, A resilient, lowfrequency, small-world human brain functional network with highly connected association cortical hubs, J. Neurosci, vol.26, issue.1, pp.63-72, 2006.

L. M. Andersen, Group analysis in MNE-Python of evoked responses from a tactile stimulation paradigm: a pipeline for reproducibility at every step of processing, going from individual sensor space representations to an across-group source space representation, Front. Neurosci, vol.12, p.6, 2018.

B. B. Avants, N. Tustison, and G. Song, Advanced normalization tools (ANTS), Insight J, vol.2, pp.1-35, 2009.

D. S. Bassett and M. E. Lynall, Network methods to characterize brain structure and function, Cognit. Neurosci.: Biol. Mind, pp.1-27, 2013.

Y. Benjamini and Y. Hochberg, On the adaptive control of the false discovery rate in multiple testing with independent statistics, J. Educ. Behav. Stat, vol.25, issue.1, pp.60-83, 2000.

N. Bigdely-shamlo, T. Mullen, C. Kothe, K. M. Su, and K. A. Robbins, The PREP pipeline: standardized preprocessing for large-scale EEG analysis, Front. Neuroinf, vol.9, p.16, 2015.

E. Bullmore and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci, vol.10, pp.186-198, 2009.

L. Campagnola, A. Klein, E. Larson, C. Rossant, and N. P. Rougier, VisPy: harnessing the GPU for fast, high-level visualization, Proceedings of the 14th Python in Science Conference. Available at, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01208191

E. Combrisson, R. Vallat, C. O'reilly, M. Jas, A. Pascarella et al., Visbrain: a multi-purpose GPU-accelerated open-source suite for multimodal brain data visualization, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02456150

P. A. Cook, Y. Bai, S. K. Nedjati-gilani, K. K. Seunarine, M. G. Hall et al., Camino: open-source diffusion-MRI reconstruction and processing, 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, vol.2759, p.2759, 2006.

R. W. Cox, AFNI: software for analysis and visualization of functional magnetic resonance neuroimages, Comput. Biomed. Res, vol.29, issue.3, pp.162-173, 1996.

A. M. Dale, B. Fischl, and M. I. Sereno, Cortical surface-based analysis. I. Segmentation and surface reconstruction, Neuroimage, vol.9, issue.2, pp.179-194, 1999.

A. M. Dale, A. K. Liu, B. R. Fischl, R. L. Buckner, J. W. Belliveau et al., Dynamic statistical parametric mapping: combining fMRI and MEG for highresolution imaging of cortical activity, Neuron, vol.26, issue.1, pp.55-67, 2000.

R. O. Gilmore, M. T. Diaz, B. A. Wyble, and T. Yarkoni, Progress toward openness, transparency, and reproducibility in cognitive neuroscience, Ann. N. Y. Acad. Sci, vol.1396, issue.1, pp.5-18, 2017.

K. Gorgolewski, C. D. Burns, C. Madison, D. Clark, Y. O. Halchenko et al., Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python, Front. Neuroinf, vol.5, 2011.

K. J. Gorgolewski, G. Varoquaux, G. Rivera, Y. Schwarz, S. S. Ghosh et al., NeuroVault. org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01134575

K. J. Gorgolewski, T. Auer, V. D. Calhoun, R. C. Craddock, S. Das et al., The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments, Sci. Data, vol.3, p.160044, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01345616

A. Gramfort, T. Papadopoulo, E. Olivi, and M. Clerc, OpenMEEG: opensource software for quasistatic bioelectromagnetics, Biomed. Eng. Online, vol.9, issue.1, p.45, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00467061

A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier et al., MEG and EEG data analysis with MNE-Python, Front. Neurosci, vol.7, 2013.

R. Guimera, S. Mossa, A. Turtschi, and L. N. Amaral, The worldwide air transportation network: anomalous centrality, community structure, and cities' global roles, Proc. Natl. Acad. Sci. Unit. States Am, vol.102, issue.22, pp.7794-7799, 2005.

M. H?, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain, Rev. Mod. Phys, vol.65, issue.2, p.413, 1993.

A. Hyvarinen, Fast ICA for noisy data using Gaussian moments, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349, 1999.

M. Jas, E. Larson, D. A. Engemann, J. Lepp?-akangas, S. Taulu et al., A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices, Front. Neurosci, vol.12, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01854552

F. H. Lin, T. Witzel, S. P. Ahlfors, S. M. Stufflebeam, and J. W. Belliveau, Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates, H? am? al? ainen, vol.31, pp.160-171, 2006.

D. Meunier, S. Achard, A. Morcom, and E. Bullmore, Age-related changes in modular organization of human brain functional networks, Neuroimage, vol.44, issue.3, pp.715-723, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00350197

M. E. Newman, Fast algorithm for detecting community structure in networks, Phys. Rev, vol.69, issue.6, 2004.

G. Niso, K. J. Gorgolewski, E. Bock, T. L. Brooks, G. Flandin et al., MEG-BIDS, the brain imaging data structure extended to magnetoencephalography, Sci. Data, vol.5, p.180110, 2018.

G. Niso, F. Tadel, E. Bock, M. Cousineau, A. Santos et al., Brainstorm pipeline analysis of resting-state data from the open MEG archive, Front. Neurosci, vol.13, 2019.

R. Oostenveld, P. Fries, E. Maris, J. Schoffelen, and R. D. Pascual-marqui, FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data, Methods Find. Exp. Clin. Pharmacol, vol.156869, pp.5-12, 2002.

W. D. Penny, K. J. Friston, J. T. Ashburner, and S. J. Kiebel, Statistical Parametric Mapping: the Analysis of Functional Brain Images, 2011.

R. A. Poldrack and K. J. Gorgolewski, OpenfMRI: open sharing of task fMRI data, Neuroimage, vol.144, pp.259-261, 2017.

J. Poline, J. L. Breeze, S. Ghosh, K. Gorgolewski, Y. O. Halchenko et al., Data sharing in neuroimaging research, Front. Neuroinf, vol.6, 2012.

P. Ramachandran and G. Varoquaux, Mayavi: 3D visualization of scientific data, Comput. Sci. Eng, vol.13, issue.2, pp.40-51, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00528985

M. Rubinov and O. Sporns, Complex network measures of brain connectivity: uses and interpretations, Neuroimage, vol.52, issue.3, pp.1059-1069, 2010.

F. S-egonne, A. M. Dale, E. Busa, M. Glessner, D. Salat et al., A hybrid approach to the skull stripping problem in MRI, Neuroimage, vol.22, issue.3, pp.1060-1075, 2004.

S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E. Behrens et al., Advances in functional and structural MR image analysis and implementation as FSL, Neuroimage, vol.23, pp.208-219, 2004.

C. B. Sullivan and A. Kaszynski, PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK), J. Open Sources Software, vol.4, issue.37, p.1450, 2019.

F. Tadel, S. Baillet, J. C. Mosher, D. Pantazis, and R. M. Leahy, Brainstorm: a userfriendly application for MEG/EEG analysis, Comput. Intell. Neurosci, p.879716, 2011.

S. Taulu, Spatiotemporal Signal Space Separation method for rejecting nearby interference in MEG measurements, Phys. Med. Biol, vol.51, pp.1759-1769, 2006.

J. D. Tournier, F. Calamante, and A. Connelly, MRtrix: diffusion tractography in crossing fiber regions, Int. J. Imag. Syst. Technol, vol.22, issue.1, pp.53-66, 2012.

S. Van-der-walt, S. C. Colbert, and G. Varoquaux, The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng, vol.13, issue.2, p.22, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00564007

B. D. Van-veen, W. Van-drongelen, M. Yuchtman, and A. Suzuki, Localization of brain electrical activity via linearly constrained minimum variance spatial filtering, IEEE Trans. Biomed. Eng, vol.44, issue.9, pp.867-880, 1997.

P. Virtanen, R. Gommers, and T. E. Oliphant, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, vol.17, pp.261-272, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02520043

D. G. Wakeman and R. N. Henson, A multi-subject, multimodal human neuroimaging dataset, Sci. Data, vol.2, 2015.

T. Yarkoni, R. A. Poldrack, T. E. Nichols, D. C. Van-essen, and T. D. Wager, Large-scale automated synthesis of human functional neuroimaging data, Nat. Methods, vol.8, issue.8, p.665, 2011.