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Abstract: This paper focuses on quantifying the uncertainty in the specific absorption rate values
of the brain induced by the uncertain positions of the electroencephalography electrodes placed on
the patient’s scalp. To avoid running a large number of simulations, an artificial neural network
architecture for uncertainty quantification involving high-dimensional data is proposed in this
paper. The proposed method is demonstrated to be an attractive alternative to conventional
uncertainty quantification methods because of its considerable advantage in the computational
expense and speed.

Keywords: artificial neural networks; uncertainty quantification; specific absorption rate

1. Introduction

Good knowledge of the effect of wireless devices such as mobile phones and laptops on their
surrounding environment is necessary in both the research community and the society at large.
More precisely, it is essential to investigate the impact of electromagnetic waves on biological
tissues [1]. In this scenario, a field of key importance is the study of the impact of electromagnetic
radiation on brain activity. However, currently, none of the existing techniques allow the use of high
resolution electroencephalography (EEG) devices without encountering a substantial shielding and
field deformation which invariably oblige for high-resolution EEG recordings that are not simultaneous
with the radio frequency (RF) radiation sources.

The final goal of our project is to design a system enabling high-resolution EEG recordings in
the presence of an RF radiating source and taking electromagnetic field deformation into account.
Achieving this goal requires understanding well the physical properties of the complex system such as
the interaction between the metallic part of the EEG recordings and the RF source. Numerical modeling
is an effective approach to investigate the properties of the new system instead of measurements which
are expensive and time-consuming. The modeling of the radiating source, head, and EEG device relies
on sets of input parameters which can affect the electromagnetic field, and thereby affect the specific
absorption rate (SAR) values in the brain which is a measure of the rate at which energy is absorbed by
the brain when exposed to an RF electromagnetic field [2]. In practice, the exact values of the inputs
cannot be found, which produces uncertainties in the simulation results [3]. Uncertainty quantification
(UQ) is indispensable when the acceptability of the simulation results is considered [3–7]. In this
paper, UQ is focused on the analysis of uncertainties in the positions of the electrodes along the scalp.
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The modeling of uncertain positions of the electrodes and an artificial neural network (ANN) model
for UQ are presented.

The traditional UQ approach is the Monte Carlo simulation (MCS) which requires running the
deterministic code a large number of times to give accurate statistics, resulting in a high computational
cost [3]. To solve the problem, surrogate models, which can be computed very efficiently, are often
constructed to imitate the physical system concerned. This paper proposes a surrogate model which
combines two different artificial neural networks (ANNs) [8,9] for UQ in the new EEG system modeling.
ANNs are brain-inspired systems which aim to imitate how humans learn. Various advanced neural
network structures have been investigated for a simple input–output relationship [9]. However, a
simple input-output ANN has difficulty in handling a relatively small number of high-dimensional
training samples since the insufficient training samples lead to inaccurate results due to the lack of
training feature [10]. Therefore, effective feature learning methods are critically needed to automatically
capture the useful features of the high-dimensional data such as SAR values observed in the brain.
For the reasons mentioned above, an autoencoder neural network [8] is introduced for dimension
reduction to obtain the features of the SAR values in the brain. The proposed ANN structure can be
used to predict the corresponding features of SAR values for a new set of inputs. Then, the predicted
SAR values in the brain corresponding to the new sets of inputs are reconstructed from the predicted
feature by the decoder neural network. The statistical quantities associated with the SAR values in
the brain such as the mean and standard deviation can be evaluated by running the proposed ANN
model.

In summary, UQ is performed with the SAR values predicted by the proposed surrogate model.
This paper is organized as follows. The proposed method is introduced in Section 2. Section 3 gives
the description of the numerical simulation and the UQ results. Conclusion and perspectives are given
in Section 4.

2. Proposed Surrogate Model for Uncertainty Quantification in RF Radiation Modeling

2.1. Numerical Modeling of the New EEG System

This section briefly describes the numerical solver used to obtain the SAR in a head covered by
an EEG net in the presence of an RF source. The requirements for this electromagnetic field solver
are to model both the metallic EEG caps and the head, which can be considered as perfectly electric
conducting (PEC) surfaces and as an inhomogeneous lossy dielectric material, respectively. The solver
chosen is based on the volume–surface integral equation (VSIE) [11,12]. It combines a surface integral
equation (SIE) to model the PEC objects and a volume integral equation (VIE) to model inhomogeneous
bodies. The couplings between the metallic and dielectric objects are included in the VSIE.

Consider a composite scatterer made of a PEC object with boundary Γ (can be either open
or closed) and a linear inhomogeneous dielectric object Ω illuminated by a time-harmonic incident
electromagnetic wave Einc in a background medium with permittivity ε0 and permeability µ0, as shown
in Figure 1.

Figure 1. Description of the 3D scattering problem. The perfectly electric conducting (PEC) parts are
modeled by their boundary (i.e., Γ) and the dielectric parts are modeled by their volume (i.e., Ω).
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Ω has a complex permittivity εc(r) = ε(r)− iσ(r)/ω where ε(r) is the dielectric permittivity at
position r ∈ Ω , σ(r) is the conductivity, and ω is the angular frequency. Using both the volume
equivalence principle and the surface equivalence principle [13], we replace the dielectric bodies by
an equivalent volume current density Jv and the conducting objects by an equivalent surface current
density Js defined on their surface. The volume current density is defined as

Jv(r) = iωκ(r)Dv(r), (1)

where i is the imaginary unit, κ(r) = (εc(r) − ε0)/εc(r) is the dielectric contrast, and Dv(r) is the
electric flux.

The total field E can be written as a sum of the incident field and the scattered fields

E(r) = Einc(r) + Escatt
v (r) + Escatt

s (r), (2)

where Escatt
s is the field scattered by Js and Escatt

v is the field scattered by Jv

Escatt
v (r) =

k2
0

ε0

∫
Ω

G(r, r
′
)κ(r

′
)Dv(r

′
)dv

′
+

1
ε0
5

∫
Ω

G(r, r
′
)5′ .(κ(r

′
)Dv(r

′
))dv

′
(3)

Escatt
s (r) = ik0η0

∫
Γ

G(r, r
′
)Js(r

′
)ds

′ − η0

ik0
5

∫
Γ

G(r, r
′
)5′ .Js(r

′
)ds

′
(4)

with G being the 3D Green’s function in vacuum and the constants η0 and k0 being the impedance and
the wavenumber in vacuum, respectively.

The volume integral equation in Ω can be expressed as

Dv(r)
ε(r)

= Einc(r) + Escatt
v (Dv(r)) + Escatt

s (Js(r)) ∀r ∈ Ω. (5)

On a PEC object, the boundary condition requires that the tangential component of the total
electric field vanishes. This gives the surface integral equation on Γ

n̂r × Einc(r) = n̂r × Escatt
v (Dv(r)) + n̂r × Escatt

s (Js(r)) ∀r ∈ Γ, (6)

where n̂r is the surface normal vector.
The VSIE is defined by Equations (5) and (6) and is solved for Js and Dv. The next step

is to discretize those equations into a matrix system using the method of moments (MoM) [13].
The volume Ω is discretized with tetrahedra and the surface Γ with triangular patches. Note that the
triangular patches must coincide with the faces of the tetrahedra at the junctions between Ω and Γ.
Rao–Wilton–Glisson (RWG) basis functions f s

m(r) [14] and Schaubert–Wilton–Glisson (SWG) basis
functions f v

m(r) [15] are used to discretize the unknowns Js and Dv, respectively

Dv(r) =
Mv

∑
m=1

αm f v
m(r) (7)

Js(r) =
Ms

∑
m=1

βm f s
m(r), (8)

where Mv is the number of SWG functions and Ms is the number of RWG basis functions.
Applying this discretization and testing the equation with both SWG and RWG basis functions,

we obtain a block matrix system
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[
Zvv Zsv

Zvs Zss

] [
α

β

]
=

[
vv

vs

]
(9)

In Equation (9), the diagonal blocks are respectively the standard VIE and SIE and the off-diagonal
block represent the coupling between the volume and surface scatterers. The excitation vector is vv

for the volume part and vs for the surface part. The system is solved for the unknown expansion
coefficients α and β.

The total electric field E in Ω is directly related to Dv and the SAR within a tissue of the head can
be obtained from the average norm of E in that tissue

SAR =
σ|E|2

2ρ
, (10)

where ρ is the tissue density and σ is its conductivity.

2.2. Design of Experiments (DoE)

The head model is a three-layer sphere discretized with tetrahedra. The PEC electrodes are
formed by the exterior triangles of the tetrahedra pertaining to the boundary of the discretized sphere.
The discretized geometry obtained is shown in Figure 2. In this case, the position of each electrode can
be represented by (r, θp, φp) (p = 1, . . . , L) in a spherical coordinate system, where r is the radius of the
sphere, θp is the polar angle, φp is the azimuthal angle, and L is the number of electrodes. The original
Cartesian coordinates of the electrodes (Px

p , Py
p , Pz

p) are obtained from a toolbox, and are used in the
numerical simulations. In the following section, the uncertainties in the positions of the electrodes are
modeled in the spherical coordinate system, and the coordinates with uncertainties are required to be
transformed into the Cartesian coordinates for numerical simulation.

In the spherical coordinate system, the center of each electrode is moved in a square, and the
size of the square is controlled by4. To simplify the problem, 9 possible positions of the center for
each electrode are chosen and represented by 9 indices, which are shown in Figure 3. The relationship
between the indices and the possible positions of the center is provided in Table 1. When 4 is
determined, the uncertain position of an electrode can be modeled by the nine indices, which makes
it a discrete random variable. In the above-mentioned case, the electrodes’ positions are changed
independently of one another, and the number of combinations is 9L.

There are three specific issues with this modeling. The first one is that the total CPU time for
a single SAR simulation is about 25 h when performed on a computer cluster with 32 cores, which
makes impossible the use of MCS directly with the solver. Second, the distance moved by the center of
each electrode must be greater than the edge length of the triangle otherwise the algorithm used in
the toolbox will arrange the electrode in its original position. This means there is a discrete variation
of the uncertain inputs and this variation must be relatively large. Third, the SAR values in brain
are high-dimensional data, and there is a small number of high-dimensional SAR values available.
To solve the aforementioned problems, an ANN model for UQ is presented in the following section.
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(a) (b)

Figure 2. Head model with electroencephalography (EEG) electrodes: (a) PEC electrodes formed
by triangles lying on the surface of the discretized three-layer sphere, and (b) three-layer spherical
head model.

Figure 3. Indexes of the nine possible positions of an electrode.

Table 1. Relationship between the index and the position.

Index 1 (θp −4, φp −4)

Index 2 (θp −4, φp)

Index 3 (θp −4, φp +4)

Index 4 (θp, φp +4)

Index 5 (θp +4, φp +4)

Index 6 (θp +4, φp)

Index 7 (θp +4, φp −4)

Index 8 (θp, φp −4)

Index 9 (θp, φp)

2.3. Proposed Surrogate Model for UQ

The structure of the new surrogate model is shown in Figure 4. Since the output (SAR values
observed in the brain) of the numerical simulation is high-dimensional, it is difficult to handle it
with a conventional input-output structure of ANN. Therefore, a pre-trained autoencoder neural
network is introduced into the proposed surrogate model for dimensionality reduction to map the
high-dimensional outputs to a suitable low-dimensional space, and also for reconstructing the original
high-dimensional data.
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Figure 4. Structure of the proposed surrogate model for uncertainty quantification (UQ).

First of all, an autoencoder neural network is trained. It can be divided into two separate
networks: an encoder and a decoder. The structure of an autoencoder neural network is presented
in Figure 5. Given the training data SAR = {SAR1, SAR2, SAR3, . . . , SARN} (SARn (1 ≤ n ≤ N)
represents a D-dimensional vector SARn ∈ RD), the encoder transforms the input matrix SAR
into a hidden representation C = {C1, C2, C3, . . . , CN} (Cn represents a d-dimensional vector Cn ∈
Rd) through activation functions, where d � D, and N is the number of input samples for the
autoencoder neural network. Then, the matrix C is transformed back to a reconstruction matrix SAR′ =
{SAR′1, SAR′2, SAR′3, . . . , SAR′N} (SAR′n is a D-dimensional vector SAR′n ∈ RD) by the decoder.

Subsequently, the proposed ANN is trained. The input samples of the proposed ANN are
I = {I1, I2, I3, . . . , IM} (Im (1 ≤ m ≤ M) represents a S-dimensional vector Im ∈ RS), which are the
uncertain inputs of the EEG numerical simulation, and C′ = {C′1, C′2, C′3, . . . , C′M} (C′m represents a
d-dimensional vector C′m ∈ Rd), which are the predicted features of SAR from the encoder neural
network, where M is the number of input samples for the proposed ANN.

Finally, in the testing process, the compressed codes C′ can be obtained from the proposed ANN
for a new set of uncertain inputs I, and then using the decoder, the predicted outputs U′ corresponding
to the new set of inputs I are obtained. The proposed ANN model can predict the outputs of the
numerical simulation very quickly. The statistical quantities of SAR values in brain can be evaluated
by running the surrogate model instead of running numerous of numerical simulations.

The hyperparameters of the two ANNs such as the number of hidden layers and units, activation
function, learning rate, etc., depending on the data of the problem. In this work, the rectified linear
unit (Relu) function [16] is used as the activation function in both the hidden layers of the autoencoder
neural network and the proposed ANN. The Relu function is

f (a) =

{
0 f or a < 0
a f or a ≥ 0

(11)

and the linear activation function [17] is used as activation function in the input layer and the output
layer of the ANNs. The linear activation function is

f (a) = a (12)
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where a is the input to a neuron. The backpropagation algorithm is used to train the two neural
networks, and the parameters are optimized through adaptive moment estimation (Adam) [17].
The mean squared error (MSE) is used for performance evaluation in the ANN

MSE =
1
R

R

∑
r=1

(Yr − Ŷr)
2 (13)

where Yr and Ŷr denote the observed and forecasted values, respectively, of the rth datum, and R is the
total number of the data.

Figure 5. Structure of an autoencoder neural network.

3. Simulations and Results

3.1. Model Description

As briefly described in Section 2.2, the model used for the head is the three-layer sphere presented
in Figure 2b. The parameters used to define the model are listed in Table 2 for a frequency of 900MHz.
The 64 EEG caps are defined as hexagons on the surface of the sphere as shown in Figure 2a. The mean
diameter of an electrode cap is 13mm. The SAR simulations are performed on a computer cluster with
32 cores (2× Intel Xeon Scalable Processors Gold 6130 2.10 GHz 16 cores). The total CPU time for a
single SAR simulation is 90,327 seconds (s) (about 25 h).

Table 2. Parameters used for the three-layer sphere at 900 MHz (four-year child).

Relative Conductivity Mass Density Outer Radius
Permittivity (S/m) (kg/m3) (mm)

Brain 55.5 0.94 1030 68

Skull 12.5 0.14 1850 71.1

Skin 35.2 0.6 1110 74.7

3.2. Results and Discussion

The SAR values in the brain obtained from a single simulation are shown in Figure 6. They are
transformed into a vector to be used by the proposed ANN model as shown in Figure 7. The ratio
of the standard deviation to the mean of the SAR values is obtained for 500 different configurations
of the EEG caps and presented in Figure 8. It shows a substantial variation of the SAR values in the
brain induced by the uncertain positions of the EEG caps. The indices of the electrodes, and the SAR
values in brain are both normalized before being inserted into the surrogate model. The dimensions of
the one-dimensional SAR values in the brain and its codes are 27,000 and 100, respectively. There
are 100 training samples and 400 testing samples for the autoencoder neural network. The proposed
neural network has 200 training samples and 200 testing samples. To perform a validation, the training
samples of each ANN are split into two parts: a training set and a validation set. The validation data
represent 30% of the training data. The average training, validation, and testing MSE values from the
autoencoder neural network and the proposed ANN are given in Table 3. The hyperparameters of
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the ANN model are presented in Table 4. The mean and standard deviation of the SAR values in the
brain are predicted from the proposed surrogate model and presented in Figure 9. The prediction
results of the proposed method are compared with those of full-wave simulations, and they have a
good consistency. The CPU time required for the new method includes two parts: (1) the time to train
the autoencoder neural network and the proposed ANN, and (2) the time to test the proposed ANN
structure. The detail of the CPU time of the UQ method is presented in Table 5. It shows that when the
ANN model is trained, it can predict the outputs of the full-wave simulations quickly.

Figure 6. SAR values in brain (W/kg).

Figure 7. Specific absorption rate (SAR) values in brain transformed into one-dimensional data.
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Figure 8. Ratio of the standard deviation to the mean of the SAR values in brain (%).

(a) (b)

Figure 9. (a) Mean of the normalized SAR in brain, and (b) standard deviation of the normalized SAR
in brain.

Compared with running plenty of full-wave simulations in MCS, the proposed sorrogate model
largely reduces the number of simulations and improves the efficiency. In this paper, all calculations of
the ANN model are performed on an Intel i7-6500U 2.6 GHz machine with 8 GB of RAM.

Table 3. Training error, validation error, and testing error of the surrogate model.

Network
Training Testing

Training Error Validation Error Testing Error

Autoencoder 1.29 × 10−7 1.68 × 10−7 1.74 × 10−7

Proposed ANN 4.92 × 10−7 5.16 × 10−7 5.45 × 10−7

Table 4. Hyperparameters of the surrogate model.

Network Number of Batch Number of Number of
Training Data Size Epochs Neurons in Each Layer

Autoencoder 100 25 8000 3000, 3000, 3000, 100, 3000, 3000, 3000

Proposed ANN 200 50 6000 500, 500, 100, 100
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Table 5. CPU time to train and test the proposed surrogate model.

Number of Data CPU Time

Training 100 + 200 172,036 s + 291 s

Testing 200 2 s

4. Conclusions

The work presented aims to quantify the uncertainty of SAR values in the brain induced by the
uncertain positions of EEG electrodes on the scalp when the acceptability of the simulation result
is considered. MCS is intractable in this scenario since the simulation time would be too long.
The proposed surrogate model can perform UQ with high-dimensional data and highly varying inputs.
In addition, it does not require prior knowledge of the uncertain input parameters of a numerical
simulation, such as their probability distributions. The prediction results of the proposed surrogate
model show a good agreement with the results of the full-wave simulations, and the proposed method
is superior to MCS in consideration of the computational expense and speed. Future work will focus
on further reducing the number of training samples required for the surrogate model.
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Abbreviations

The following abbreviations are used in this manuscript:

EEG Electroencephalography
RF Radio frequency
SAR Specific absorption rate
UQ Uncertainty quantification
ANN Artificial neural network
MCS Monte Carlo simulation
ANNs Artificial neural networks
PEC Perfectly electric conducting
VSIE Volume–surface integral equation
SIE Surface integral equation
MoM Method of moments
RWG Rao–Wilton–Glisson
SWG Schaubert–Wilton–Glisson
DoE Design of Experiments
Relu Rectified linear unit
Adam Adaptive moment estimation
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