Skip to Main content Skip to Navigation
Conference papers

Differential Power Analysis Model and Some Results

Abstract : CMOS gates consume different amounts of power whether their output has a falling or a rising edge. Therefore the overall power consumption of a CMOS circuit leaks information about the activity of every single gate. This explains why, using differential power analysis (DP A), one can infer the value of specific nodes within a chip by monitoring its global power consumption only. We model the information leakage in the framework used by conventional cryptanalysis. The information an attacker can gain is derived as the autocorrelation of the Hamming weight of the guessed value for the key. This model is validated by an exhaustive electrical simulation. Our model proves that the DPA signal-to-noise ratio increases when the re- sistance of the substitution box against linear cryptanalysis increases. This result shows that the better shielded against linear cryptanalysis a block cipher is, the more vulnerable it is to side-channel attacks such as DPA.
Complete list of metadata
Contributor : Renaud Pacalet Connect in order to contact the contributor
Submitted on : Wednesday, July 8, 2020 - 10:31:04 AM
Last modification on : Monday, October 19, 2020 - 11:59:15 AM

Links full text



Sylvain Guilley, Philippe Hoogvorst, Renaud Pacalet. Differential Power Analysis Model and Some Results. CARDIS, Aug 2004, Toulouse, France. pp.127-142, ⟨10.1007/1-4020-8147-2_9⟩. ⟨hal-02893277⟩



Record views