
HAL Id: hal-02894654
https://telecom-paris.hal.science/hal-02894654v2

Submitted on 2 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient and Exact Design Space Exploration for
Heterogeneous and Multi-Bus Platforms

Amna Gharbi, Andrea Enrici, Bogdan Uscumlic, Ludovic Apvrille, Renaud
Pacalet

To cite this version:
Amna Gharbi, Andrea Enrici, Bogdan Uscumlic, Ludovic Apvrille, Renaud Pacalet. Efficient and
Exact Design Space Exploration for Heterogeneous and Multi-Bus Platforms. Euromicro DSD 2020,
Aug 2020, Portorož, Slovenia. �hal-02894654v2�

https://telecom-paris.hal.science/hal-02894654v2
https://hal.archives-ouvertes.fr

Efficient and Exact Design Space Exploration for
Heterogeneous and Multi-Bus Platforms
Amna Gharbi

LTCI, Télécom Paris
Institut Polytechnique de Paris

Paris, France
{firstname.lastname}@telecom-paris.fr

Andrea Enrici, Bogdan Uscumlic
Nokia Bell Labs
Nozay, France

{firstname.lastname}@nokia-bell-labs.com

Ludovic Apvrille, Renaud Pacalet
LTCI, Télécom Paris

Institut Polytechnique de Paris
Paris, France

{firstname.lastname}@telecom-paris.fr

Abstract—Design Space Exploration of data-flow Systems-on-
Chip either focuses on classical shared bus or on complex
network-on-chip (NoC) architectures. A lack of research work
exists that targets segmented bus architectures. These offer
performance improvements (latency, power consumption) with
respect to a shared bus, while employing much simpler com-
munication structures and algorithms than a NoC. Despite the
lack in the research work, segmented buses are popular in multi-
processor systems and in FPGA interconnects. This paper fills
this lack with two contributions. First, we propose a Satisfiability
Modulo Theory (SMT) formulation. Secondly, we provide a
technique to reduce the design-space explosion problem that is
portable to other formulations (e.g., ILP, MILP) and to problems
where the scheduling on units (e.g., bus, CPU) is multiplexed
in time. We integrated these contributions in a state-of-the-art
design tool that we employ for evaluation purposes with a set of
streaming applications and a MPSoC platform. The resulting
framework can study the performance of fixed interconnects
as well as determine the optimal architecture among a set of
candidates. Our reduction technique improves considerably the
scalability of DSE. For our testbench, we reduce the SMT solver
run-time from 20 up to 589 times.

Keywords-design space exploration; scheduling; satisfiability
modulo theory; segmented bus; FPGA; MPSoC

I. INTRODUCTION

Segmented buses are interconnect architectures that were
first proposed in the 90’s [1] to increase the performance,
communication parallelism and energy savings of shared-bus
architectures. A segmented bus offers reduced wiring and load
capacitance. This results from the partitioning of a system
bus into two or more segments that are interfaced by bridge
or switch units (e.g., to connect different clock domains)
or buffers. Each segment behaves as a normal bus shared
between a reduced set of local modules. Each segment operates
in parallel to other segments and unused segments can be
selectively deactivated to save energy. Segmented buses are
present in both Multi-Processor System-on-Chip (MPSoC) and
FPGA architectures.

Common designs typically segment buses in only two parts:
one for high-speed processing units and for low-speed or
peripheral units. The main reason for this under-utilization
is that communication management is harder than for shared
system-buses and is comparable to some configurations of
Network-on-Chips (NoCs), e.g., temporally disjoint networks.

Inter-segment communications are typically governed by a
central arbiter that receives and dispatches signals from/to
arbiters that are local to segments. This complicates the
inter-dependencies between the problems of mapping (i.e.,
selecting a spatial allocation of functions to platform units),
scheduling (i.e., selecting a temporal allocation for units to
execute functions) and interconnect configuration (i.e., number
and type of units per segment). Solving these problems is
commonly called Design Space Exploration (DSE).

Constraint Programming (CP) is a promising approach for
combinatorial problems, such as DSE. It can solve the map-
ping, scheduling and interconnect configuration sub-problems
for orthogonal performance metrics, e.g., latency, power con-
sumption. CP provides complete solutions without the need to
combine separate solutions, for each of the sub-problems, sub-
optimally. CP also has the advantage that new constraints and
metrics can be added to an existing formulation, in a modular
way, without the need for radical changes.

In this paper, we propose a CP formulation for the DSE
problem as Satisfiability Modulo Theory (SMT). Our formu-
lation allows to find a deadline-aware and an optimal solution
in terms of latency for multiple applications sharing the same
platform. It defines the spatial mapping of tasks to processing
elements and communications to routes of segmented buses
and derives schedules of tasks and communications on shared
platform resources. This formulation is solved by the state-of-
the-art solver Z3 [2]. To mitigate the computational costs of
our complete search, we propose a static analysis technique
that reduces the number of variables created by the solver
and their domains. To the best of our knowledge, this is the
first exact formulation for segmented bus interconnect that
routes data-transfers to different segments and distributes the
workload of communications over different bus slots. Bus
segments can be interconnected in an ad-hoc manner (e.g.,
in FPGAs), or based on a specific schema (e.g., a hierarchical
bus). We integrated our work in a design environment based
on UML/SysML that we used to evaluate our contributions on
a testbench of real-world streaming applications and a MPSoC
platform.

In the rest of this paper, Section II positions our contribution
with respect to related work. In Section III, we present
an overview of our DSE approach and the complete SMT

formulation. Section IV presents our DSE reduction technique.
Section V evaluates our contributions and Section VI provides
conclusions and directions for future work.

II. RELATED WORK

In this paper, we focus on the problem of allocating in
space and time, both computations and communications of
a data-flow system subject to timing constraints (deadlines)
with a segmented bus interconnect. With respect to platforms
with a single shared-bus, our problem is complicated by the
management of communications within and between multiple
segments with different performance characteristics, the possi-
bility to route communications over different paths composed
of more than two segments, the partitioning of a segment time
slots to different communications.

As described in [3], optimization techniques like Linear
Programming (LP) or Constraint Programming (CP) are based
on a set of decision variables, a set of constraints and possibly
one or more objective functions to optimize. With respect
to LP, a CP model supports only discrete decision variables
(integer or boolean) but offers more flexibility to model logical
constraints and arithmetic expressions (e.g., modulo, integer
division, minimum, maximum). CP has no limitation on the
arithmetic constraints that can be set on decision variables and
can use ad-hoc constraints (e.g., the ”all-different” constraint
described in [3]), to accelerate the search of frequently used
patterns. SMT is an approach to solve CP problems that
is more applicable and flexible than classical mathematical
programming techniques. LP is applicable when the problem is
specified in terms of linear inequalities and feasible solutions
are in the space of a convex polyhedron. Relying only on
linear formulations to solve resource-constrained scheduling
problems might increase considerably the size of the problem
and generate a large list of decision variables which will lead
to serious shortcomings [4]. Because of these reasons, recent
work explores the use of CP formulations for DSE of systems-
on-chip. To the best of our knowledge, we are the first to
provide a mathematical formulation for segmented pipelined
bus interconnects. In the rest of this section, we position our
formulation with respect to a selection of recent contributions
that target the interconnects of MPSoCs.

An important work that paved the way to SMT techniques
for resource-constrained scheduling problems and complex
interconnects (multi-hop networks) can be found in [5]. In [6],
[7], the authors describe a DSE framework and a SMT
solver for mixed critical multi-core architectures using shared
memory and message passing for communications. This work
formulates a scheduling model that, theoretically, includes
the presence of multiple buses. However, contrary to our
work, this formulation does not capture the management of
communications over multiple buses, e.g., selection of a route
among multiple possibilities, splitting transactions over multi-
ple segments. In [8], the authors propose a study that allocates
tasks to an overloaded processor to maximize the number of
tasks that meet their deadlines. An overloaded processor is one
with a workload for which, because of dynamic changes in the

execution environment, there is no feasible schedule where all
tasks can meet their deadlines. However, the formulation in [8]
does not account for the presence of multiple processors and
for the inter-processor communications analysis.

Relevant studies were conducted by Rosvall et al. in [9],
[10], [11] for mixed-critical applications with both hard and
best-effort timing requirements. In [9], [10] the authors study
MPSoC architectures with a single Time Division Multiple
Access (TDMA) bus. The contribution in [10] extends [9] by
considering power consumption as a performance metric (in
addition to latency and throughput studied in [9]), improves
the formulation with new scheduling constraints and proposes
a two-step approach, where constraint programming is applied
after heuristics have pruned the design space around promising
solutions. In [11], the authors target Temporally Disjoint
NoCs, where links can be configured to guarantee the absence
of collisions by injecting packets at proper time slots. The
formulation in [11] models network links as TDMA shared
buses: only one processor at a time can be assigned access
to a link; given a link, a processor is assigned a complete
TDMA slot. No buffering takes place in switches, between
links, and switches implement deflection routing (i.e., in case
of link contention, packets with lower priority are ”misrouted”
to unfavored links, according to a deflection policy). The
formulation in [11] can be enriched with our model, where a
slot on a bus is shared by multiple processors. The formulation
in [11] does not explicitly model routing in order to limit the
size of the design space. We also neglect buffering between bus
segments, but we explicitly account for routing and explore
possible routes between a source and destination processor
located on different segments.

The work in [12] is, to the best of our knowledge, the most
advanced SMT solution in terms of target platform complexity.
It targets clustered multi-core platforms with a Network-
on-Chip interconnect. Among other aspects, this formulation
models DMA transfers and the buffering within NoC routers.
The selection of network routes and contentions are left for
future work. As we model the routing of communications and
their split over multiple bus slots, ideally, our work fills the
gap between formulations for simple single-buses, [9], [10],
and complex NoCs, [12].

III. THE DSE FRAMEWORK

An overview of the DSE framework is illustrated in Fig. 1.
Application and platform models are first created by means of
TTool/DIPLODOCUS [13] with UML/SyML diagrams. We
selected TTool/DIPLODOCUS as it is free, open-source and
targets early designs for which not all low-level details can
be provided (e.g., size and policy of caches, platform-specific
size of data). The tool offers a good compromise, in terms of
abstraction, to program MPSoC platforms for users (e.g., IT
engineers) that are not application experts or do not have deep
knowledge of high-performance embedded systems.

In Fig. 1, UML/SysML diagrams are parsed, scanned and
analyzed in order to automatically extract a SMT formulation.
The latter is given as input to the Z3 solver [2] which

returns a solution model if the formulas are satisfiable. The
output model is converted back to UML/SysML for animation
purposes: the initial diagrams are animated with the mapping
solution, Gantt charts are created to illustrate the scheduling
of tasks and communications. Order-based scheduling can also
be derived by analyzing the obtained time-based scheduling.

(3) SMT solver

Solution
model

UML/SysML
diagrams

(2) UML/SyML-to-SMT
model transformation

SMT
formulas

Scanner

Parser

Static Analysis

(1) Model
based design

TTool/DIPLODOCUS

(4) SMT-to-UML/SysML
model transformation

(for diagram
animation)

IR generation

Z3 Theorem Prover

IR = Intermediate Representation

Fig. 1. Overview of the Design Space Exploration workflow.

Applications are denoted in TTool/DIPLODOCUS with
UML Activity and SysML Block diagrams. These capture
the data and control dependencies between tasks (i.e., units
of work) as well as the internal behavior of each task (state
machine). Execution costs of UML Activities are represented
by an operator that denotes the algorithmic complexity of
an Activity. This operator denotes the number of steps (e.g.,
machine instructions, lines of code) that are necessary to
compute a task. The timing duration of a step in clock cycles
is specified in the architecture diagram, for each unit.

Architectures are modeled with a UML Deployment dia-
gram. This diagram captures the topology of a platform as
well as the performance (e.g., bus bandwidth, number of CPU
cores, memory size) of both the hardware circuitry and the
software stack that compose a unit at Electronic System-Level
of abstraction. In the rest of the paper, we refer to generic
execution units as Processing Elements (PEs). PEs dispose of
Direct Memory Access (DMA) units to transfer information
on bus interconnects. UML/SysML diagrams are transformed
in a graph-based intermediate representation to extract a
SMT formulation for the mapping and scheduling problems
(step 2 in Fig. 1). The architecture diagram is converted in
an undirected graph Garch =< U,L > where nodes represent
processing units as well as communication units (buses and
bridges) that are annotated with performance parameters. Each
application diagram is converted into a dependency graph
GAapp =< TA, CA >, where TA is the set of tasks (UML
Activities) and CA the set of edges denoting inter-task de-
pendencies, for application A. Edges that correspond to data
dependencies are labeled with a positive integer that models
the size of the First-In-First-Out (FIFO) buffer associated. In
our models, if A is a periodic application, we require the user
to explicitly represent each period under study as a sub-graph
in GAapp. We also require the user to explicitly model control
dependencies between tasks that belong to different periods

(e.g., to force the execution of tasks in period n before tasks in
period n+1). Our SMT formulation is based on the following
design assumptions:
• Buffers and tasks are not allowed to migrate at run-time.
• Each PE disposes of a local private memory. Tasks

allocated to a PE read and write in its local memory.
Buffers are alive as long as producer or consumer tasks
are alive.

• Each PE can execute only one task at a time, without
preemption, until the task completion.

• Latency for reading/writing data from/to a PE local
memory is considered as negligible

• We consider the absence of deadlocks or livelocks on the
interconnect and the absence of losses during a transfer.

A. The SMT problem formulation
In this subsection, we describe the entire formulation. The

latter can be extended with new constraints, cost or perfor-
mance metrics without the need to be entirely recoded and
without changing the solving technique. This property makes
the CP approach advantageous compared with heuristics where
problem definition and solving are tightly coupled: a slight
change in the problem definition might require reconfiguring
pre-coded heuristic to find a viable solution.

We consider time to be divided in atomic slots that are used
as a time-line to determine a scheduling. The length of a slot,
lslot, impacts the granularity and the computational cost of
the DSE process. The value of lslot determines a compromise
between precision and execution time of the DSE process.
We specify to the reader that the values of variables that are
related to scheduling aspects are integer multiples of lslot (e.g.,
deadlines). The notations for our formulation are described
in Table I. Variables and constraints apply to the set of all
application graphs A ∈ A.

1) Decision variables: We define a boolean decision vari-
able to denote the task-to-PE mapping:

∀t ∈ TA,∀c ∈ F (t), zt,c =
{

1 if t is mapped to c,
0 otherwise. (1)

Variable xt,p denotes the task-to-cluster mapping:

∀t ∈ TA,∀p ∈ F ′(t), xt,p ∈ {0, 1} (2)

ym,ni,j,ρi,j
indicates the mapping of a data dependency to a route

in the platform. It allows multiple routes exploration.

∀cAm,n ∈ CA,∀i, j ∈ F ′(m)×F ′(n),∀ρi,j ∈ R, ym,ni,j,ρi,j
∈ {0, 1}

(3)
startt indicates the starting time slot of task t. startt is a pos-
itive integer upper-bounded by NA, as a deadline requirement
should be respected for a valid deployment.

∀t ∈ TA, startt ∈ {0, .., NA} (4)

Integer variable em,nb,s denotes the amount of data transferred
through bus b at time slot s for communication from task m
to task n.

∀cAm,n ∈ CA, ∀b ∈ B, ∀s ∈ {0, .., NA}, em,nb,s ∈ {0, .., bwb}
(5)

TABLE I
NOTATIONS FOR THE SMT FORMULATION

Notation Definition
A set of the application dependency graphs.
deadlineA deadline of an application A ∈ A.
t ∈ TA a task from application A.
bint,
boutt

total amount of input and output data that are consumed
and produced by one execution of task t.

cAm,n ∈
CA

a communication between tasks m and n in application
A.

dcAm,n
the amount of data to transfer on cAm,n.

c a processing element (e.g., a CPU core, a hardware
accelerator).

p in case a PE models a stand-alone mono-core unit, p
models it. In case a PE is part of a multi-core unit, p
denotes the cluster of PEs that encapsulates all of the unit
cores.

F (t) a function that returns the set of PEs (c) where task t can
execute.

F ′(t) a function that returns the set of processing blocks (p)
where task t can execute.

memc amount of available space in the local memory of c.
ρi,j a route in the architecture for the transfer of data between

PEs i and j. It is defined as a path in the architecture
graph that starts from the DMA of PE i and terminates at
local memory of j, or vice versa.

R the set of routes available in target platform.
B ⊂ U the set of buses b in the platform.
Rb1,b2 the set of routes including the bus-to-bridge-to-bus b1, b2

fragment.
bwb the bandwidth per atomic time slot of bus b.
pt(t, c) return the processing time of task t on PE c. It includes

the time needed to read/write data in local memory of c.
NA an upper bound on the number of time slots that are

allocated to any unit in the platform, for any application
A ∈ A. It is defined as max

A∈A
{deadlineA, A ∈ A}.

s ∈
{0, ..., NA}

the index of a time slot.

lslot the length of an atomic time slot.

2) Constraints: Constraints (6), (7) and (8) ensure a valid
physical mapping of a task t. In (6), a unique and feasible
task-to-PE mapping is granted. Constraint (7) indicates that
task t is assigned to the cluster p including processing element
c. Constraint (8) states that a task can be mapped on a
processing element only if the latter provides enough memory
to accommodate its input and output data.

∀t ∈ TA,
∑
c∈F (t)

ztc = 1 (6)

∀t ∈ TA, if (
∑
c∈p

ztc ≥ 1) then xtp = 1 else : xtp = 0 (7)

∀t ∈ TA, ∀c ∈ F (t), (bint + boutt)ztc ≤ memc (8)

Constraint (9) ensures a unique and valid route is assigned
to communication cAm,n when tasks m and n are mapped
respectively to processors i and j.

∀cAm,n ∈ CA, ∀i, j ∈ F ′(m)× F ′(n), i 6= j,

if((xm,i = 1) ∧ (xn,j = 1)) then
∑
ρij∈R

ym,ni,jρij
= 1

else :
∑
ρij∈R

ym,ni,jρij
= 0

(9)

Constraint (10) ensures that a single task executes on a mono-
core processing element at a time. endt denotes the end of
execution of task t in time slots. It is calculated using (11).

∀t, t′ ∈ TA, t 6= t′, ∀c ∈ F (t) ∩ F (t′),
¬((ztc = 1) ∧ (zt′c = 1)) ∨ ((startt′ ≥ endt) ∨ (startt ≥ endt′))

(10)

∀t ∈ TA, endt = startt +
∑
c∈F (t)

pt(t, c)zt,c (11)

Constraint (12) guarantees precedence relations between pairs
of producer-consumer tasks (i.e., tasks related by a data
dependency in application graphs).

∀cAm,n ∈ CA, startn ≥ endm (12)

We also implement task symmetry breaking constraints to
enforce a lexicographic ordering of identical tasks as in [12].

Remaining constraints describe the time-slots allocation for
transfers on a route of multi buses. When a bus b is selected to
explore the possibility of being allocated for a data transfer, the
bandwidth of b (per time slot), bwb, can be allocated entirely
to a data transfer or shared between different data transfers.
Because the buses that form a route ρi,j can have different
capacities, our modeling proposes that all buses on a route
operate at the capacity of the slowest bus. This avoids buffer
overflows in bridges and is consistent with our assumption that
data are not lost in the interconnect. The residual bandwidth
per slot (i.e., difference between the bandwidth of a bus and
that of the route slowest bus) can be allocated to other transfers
on routes that partially overlap with ρi,j .
Constraints (13) and (14) ensure respectively for a bus to
respect its capacity, and for a transfer, to assign enough time
slots on a route of bus segments to transfer the required amount
of data.

∀b ∈ B, ∀s ∈ {0, .., NA},
∑

cAm,n∈CA

em,nb,s ≤ bwb (13)

∀b ∈ B, ∀cAm,n ∈ CA,∑
s∈{0,..,NA}

em,nb,s = dcAm,n
×

∑
i,j∈F ′(m)×F ′(n)

∑
ρi,j∈R, b∈ρ

ym,ni,j,ρi,j

(14)

Besides inter-task precedence constraints, a precedence con-
straint must also be enforced between a computation-
communication pair: (i) a data transfer cannot start before
producer task has completed execution and (ii) a consumer
task can start as soon as data transfer is completed. Given a
data transfer, constraints (15) allocate no bus bandwidth in
time slots that precede the end of producer task m or follow
the start of consumer task n.

∀cAm,n ∈ CA, ∀b ∈ B, ∀s ∈ {0, .., NA},
(s ≥ endm) ∨ (em,nb,s = 0)

(s < startn) ∨ (em,nb,s = 0)

(15)

Constraint (16) corresponds to the forwarding of data between
two bus segments. Data transferred on bus b1 at time slot s

are transferred on next bus b2 at time slot s+1. Note that we
use the subset of routes Rb1,b2 defined in Table.I.

∀cAm,n ∈ CA, ∀s ∈ {0, .., NA}, ∀b1, b2 ∈ B∑
ρi,j∈Rb1,b2

ym,ni,j,ρi,j
= 1 =⇒ em,nb2,s+1 = em,nb1,s

(16)

B. Discussion
We discuss here some precisions concerning our formula-

tion. In the latter, communications are performed in parallel
to computations by dedicated Direct Memory Access (DMA)
engine. These operate between a source PE local memory and
a destination PE local memory, regardless the bus segment
where PEs are located.

Constraint (16) ensures that data are transferred across bus
segments in a pipelined mode, without buffering: a data packet
being transferred on bus n at slot s is forwarded, in-order, on
bus n+1 at slot s+1. This corresponds to segments interfaced
by router or switch units, without buffering. This configuration
can be found in segmented buses as well as in Temporally
Disjoint Networks [11].

Constraints (9), (13-16) relate to the routing and duration
of data transfers. They account for the presence of concurrent
transfers, the sharing of segments bandwidth and the allocation
of slots to multiple transfers. Similar constraints are also
common to the behavior of NoCs, which makes these formulas
portable to target these more complex interconnects.

We highlight to the reader that function F ′(t) returns
different units according to the type of PE where a task t
can be mapped. This differentiation allows our formulation
to reduce the number of variables that are allocated to study
communications to/from t. In fact, a PE models either a stand-
alone single-core unit (e.g., micro-controller, IP block) or a
core within a multi-core unit (e.g., a Digital Signal Processor).
In this second case, variables for communications must be
allocated to consider the reception and dispatch of data at the
level of abstraction of the entire multi-core unit rather than for
each core (we neglect inter-core communications).

In terms of portability, our formulation can be exported to
frameworks that operate at levels of abstraction lower than
TTool/DIPLODOCUS (e.g., SystemC, cycle-accurate simula-
tors). An example of such a framework where related work on
SMT was integrated is ForSyDe [14]. Note that a framework
abstraction level determines the coarseness of the information
that is assigned to SMT variables. For instance, let us consider
the value returned by function pt(t, c) in Equation 11. In
DIPLODOCUS, this value is the algorithmic cost of the UML
Activity for task t multiplied by the number of cycles taken by
the PE c to perform t. In ForSyDe, the same function returns
the Worst-Case Execution Time of t on PE c.

IV. THE DESIGN SPACE REDUCTION TECHNIQUE

Our holistic SMT formulation completely explores a design
space. However, such an approach, suffers from the well-
known space explosion problem that often leads to unaccept-
able exploration cost and scalability issues. Time slotted for-
mulations allow to accurately analyze and schedule concurrent

access to shared resources. However, they suffer from the
combinatorial explosion of the number of variables required
to study the scheduling of time-shared resources, in all slots,
i.e., s ∈ {0, ..., NA}. In this section, we provide a solution to
reduce the design space without compromising the quality of
solutions.

A. Description of the DSE Reduction Technique

Our solution consists in performing a static analysis (Fig. 1)
on the dependency graph prior to the exploration. The purpose
of this analysis is to determine temporal boundaries that
narrow down the number and domains of some scheduling-
related variable. These boundaries are, for a task t, the earliest
start time (ESt), the earliest finish time (EFt), the latest start
time (LSt) and the latest finish time (LFt). The analysis is
based on the dependencies between tasks, the characteristics
of units where a task can be potentially mapped, the deadline
of applications (the application latest finish time LFA) and
an application earliest start time (ESA). By default, the latter
is null. It can be greater than zero in case of pipelined
applications, where the execution of the initial task can be
delayed because of scheduling constraints.

We implemented this static analysis based on the Critical-
Path Method (CPM) [15] that is a collection of algorithms
commonly used in project planning in many domains. CPM
allows to compute the longest path of planned activities and
to identify critical activities. We reuse two algorithms from
CPM: the forward pass and the backward pass.

1) Forward Pass: It calculates the tuple <ESt, EFt> . ESt
is computed based on input dependencies: the earliest time at
which t can start is when all its predecessors have finished.
Formally, ESt = max

i∈{1,..,k}
{EF (ti)}, where {t1, ...tk} is the

set of predecessor tasks for t. The forward pass starts exploring
a dependency graph GAapp at the source, so that ESsource is
assumed to be equal to ESA. Then it browses GAapp forward:
once ESt is computed for task t, EFt is calculated as ESt+
pt(t, c) (we remind that pt(t, c) is the processing time of t on
PE c). We select c as the fastest execution unit where t can
be mapped: this allows the shallowest reduction of the domain
interval, thus including all possible mappings.

2) Backward Pass: It calculates the tuple <LSt, LFt>.
LFt is first computed based on output dependencies. The
backward pass examines GAapp at the sink task, so that LFsink
corresponds to LFA. Then it browses GAapp backward until
the source. A task t must complete before the earliest LS
of all its successors, hence LFt = min

i∈{1,..,u}
{LS(ti)}, where

{t1, ...tu} is the set of successor tasks for t. LSt corresponds
to LFt − pt(t, c), where c is also the fastest PE, where t can
execute, as it provides the latest start and finish times. Selec-
tion of the fastest c provides the widest temporal boundaries
thus reducing the variables domain without excluding feasible
solutions. Computing tuples <ESt, EFt>, <LSt, LFt> for all
tasks with the forward and backward passes simply requires
to traverse the dependency graph GAapp. Hence complexity is

that of common graph traversal algorithms (e.g., depth-first),
O(TA + CA).

We apply two reductions. The first reduction concerns the
definition domain of variables startt,∀t, initially defined in
(4), to the following domain:

∀t, startt ∈ {ESt, ..., LSt} (17)

The second reduction concerns the set of created variables
em,nb,s , initially defined in (5), to the following subset:

∀cAm,n ∈ CA, ∀b ∈ B, ∀s ∈ {EFm + 1, ..., LSn − 1},
em,nb,s ∈ {0, ..., bwb}

(18)

These optimizations reduce as well the number of constraints
(13-16) and result in a smaller problem size.

Unlike many heuristics, our reduction technique improves
scalability without any compromise on optimality. Our analy-
sis refines the input formulation of the DSE problem. This
allows solvers to create a smaller internal representation
that requires less time to be explored. Our technique is not
restricted to the specific formulation in this paper, nor to
SMT formulations, in general. It can be applied to Linear
Programming, to other solvers (e.g., IBM Cplex) and does
not depend on the DIPLODOCUS abstraction level. It is
applicable to any variant of the mapping-scheduling problem,
where there is at least one resource (e.g., bus, PE) for which
scheduling is multiplexed in time.

Concerning related work on reduction techniques, symmetry
breaking is a family of techniques that is commonly used in
constraint programming (see [12], [16]) to avoid searching
through isomorphic solutions. In our formulation we already
use task symmetry breaking, as in [12], to improve solver run-
time. However, relying only on task symmetry breaking was
not enough to significantly improve scalability. As opposed to
homogeneous architectures, processor symmetry breaking on
heterogeneous PEs is very limited. Hence, we needed new
reduction techniques for the DSE problem. Our technique
allows to improve considerably the scalability regardless of
the platform type. To the best of our knowledge, this is the
first generic and efficient reduction technique.

V. EXPERIMENTAL EVALUATION

In this section we evaluate our contributions for the DSE of
multi bus platforms. We borrow the same workload of data-
flow applications as that in [9], Fig. 2. We select their testbench
as their work is the closest to ours in terms of abstraction level
and design assumptions. In all tests, time units for latency and
processing times are expressed in clock cycles and data units
(du) are used to express communication volumes. We set the
length of a single slot lslot to 1 clock cycle to allow for the
most accurate analysis. In Fig. 2, tasks are annotated with
execution times reported in [9]. To account for platforms with
heterogeneous PEs, we assume the processing times of tasks
on DSPs and that on hardware accelerators to respectively 1/5
and 1/50 of the times reported.

getPixel
320

gx
77

 6

gy
77

 6

abs
123

 1 1

getimage
20

usan
1177

 1

direction
833

 2

thin
32

 3

putimage
15

 2

frontEnd
141

rasta
31

 2

compjah
107

 1

backEnd
133

 1

powspec
235

 2

audspec
108

 2

 2

rastaFilter
194

 1

 3

 1

read
413

CC
1110

 1

DCT1
252

 1

DCT2
252

 1

DCT3
252

 1

DCT4
252

 1

DCT5
252

 1

DCT6
252

 1

Huff1
340

 1

Huff2
340

 1

Huff3
340

 1

Huff4
340

 1

Huff5
340

 1

Huff6
340

 1

CS
2524

 1 1 1 1 1 1

write
132

 1

Sobel SUSAN RASTA-PLP JPEG encoder

Fig. 2. The dependency graphs of our testbench. Edges are labeled with the
size of buffers. Tasks are labeled with their processing times.

x4 instances

Fig. 3. A template for the target architectures evaluated in sub-section V-A.

A. Optimal interconnect exploration

We first show how our contributions assist a user in select-
ing an optimal interconnect structure, so that overall system
latency is minimized. We consider 4 instances of application
SUSAN in Fig. 2. Target architecture contains a quad-core
CPU and four sets of PEs, each composed of 1 DSP and
2 hardware accelerators (usan and direction). We consider
three architecture instances: (Architecture 1) where all PEs
are connected to a single shared bus, (Architecture 2) such
that only the CPU is connected to a shared bus. The latter
interfaces to 4 segments (Fig. 3), each with one DSP and
two hardware accelerators. In these two instances, all buses
have a bandwidth of 16 dus. We consider a third instance
(Architecture 3), identical to the second, where the shared bus
segment has a bandwidth of 32 dus.

In all cases, the optimal solution assigns tasks getImage and
putImage of each SUSAN instance to a CPU core and tasks
usan, direction and thin to DSPs and accelerators.

Fig. 4 shows the DSE results for instances where the size
of data produced/consumed in SUSAN in Fig. 2 is equal to 32
data units. Here, Architecture 1 solution includes the lowest
and the highest achievable values of latency. Even though four

susan1

 susan2

susan3

susan4 80

100

120

Architecture 1
Architecture 2
Architecture 3

Fig. 4. Comparison of the optimal latency (in cycles) for a workload of 4
instances of the SUSAN filter in Fig. 2 on three architectures with different
interconnects.

applications are equivalent and parallel computing resources
are allocated, we notice a gap of 22 cycles between the two
extreme latency values (respectively 104 cycles for susan2 and
126 cycles for susan 4). This gap is explained by contention on
bus due to competition of parallel data transfers for the single
shared bus. Architecture 2 provides more balanced latencies,
with a latency gap equal to 12 cycles (respectively 106 cycles
for susan 2 and 118 cycles for susan 4). In Fig. 4, the diamond
for Architecture 1 encapsulates that of Architecture 2, which
indicates that Architecture 2 yields lower latencies. However,
the gap between the shortest and the biggest latency values (12
cycles) still demonstrates contention on shared bus segment.

Architecture 3 solution reduces further contention (the gap
is only equal to 4 cycles) as well as latencies. Thus, our DSE
framework suggests to the user that a segmented interconnect,
where segments have a bandwidth of 16 dus and the shared
bus a bandwidth of 32 dus is the best architecture instance to
the studied workload.

B. Performance evaluation experiment

In this sub-section, we evaluate the performance of our DSE
formulation before and after the optimization that reduces the
design space explosion problem (Section IV). Similarly to [9],
we consider a set of workloads for all combinations of the
applications in Fig. 2 and assume data produced/consumed
have a size of 8 dus. Our results refer to solutions that
guarantee all applications deadlines. In fact, we are mainly
interested in time-sensitive systems where a timing guarantee
must be given for the system to work correctly (e.g., real-
time systems). These systems are not required to respond as
fast as possible (i.e., minimize latency) but rather have to
respond fast enough so that timing requirements are respected
(i.e., latency ≤ deadline). Deadlines were set to 490 cycles
(Sobel), 1170 cycles (SUSAN), 575 cycles (RASTA-PLP) and
1830 cycles (JPEG). These values correspond to the time
requirement to complete one execution for the applications
in Fig. 2.

The target platform is a MPSoC including 1 quad-core CPU,
8 DSPs and 1 hardware accelerator. Its interconnect is a bus

with 3 segments. The CPU is connected to a segment as
in Fig. 3 and other PEs are disposed on the two other segments.

We set a timeout of 1800 seconds after which we stop
exploration if no solution was found. Based on our experience,
this is the average amount of time that a user is willing to await
for the results of DSE, for early designs, at high abstraction
levels such as that of TTool/DIPLODOCUS. Fig. 5 shows run-
time evolution with a logarithmic scale. From Fig. 5, it can
be seen that the reduction decreases the run-time by orders of
magnitude. The red curve indicating run-time before applying
reductions shows that the solver starts to violate the timeout
with workload jpeg because of the large number of variables
created for all slots. This violation results in the impossibility
to study 8 out of 15 workloads within the fixed timeout. In
contrast, the blue curve in Fig. 5 shows the benefits of our
reduction technique. The solver run-time increases very slowly
with the increase of workloads complexity. The run-time val-
ues vary in the range [10−2, 10] seconds. Focusing only on the
heaviest workload (sosurajp), we noticed that the dimension of
our problem (number of variables and constraints) was reduced
drastically: number of variables decreased from 13K to 3K
and number of constraints decreased from 230K to 17K. This
demonstrates the effectiveness of our reduction techniques to
reduce the solver run-time and improve scalability of DSE.

Fig. 6 shows the solver run-time for a fixed workload,
sosurajp (heaviest workload in our testbench), as a function
of lslot that varies from 1 cycle to 10 cycles. This curve
represents the impact of the DSE granularity on the solver
run-time and allows to appreciate the impact of our reduction
technique. By considering the same timeout as the one for
Fig. 5, 1800 seconds, the curve plotting run-time evolution
without our reduction technique shows that it is not possible
to explore the design space with a granularity smaller than 3
cycles/slot. On the contrary, the curve plotting results of the
optimized formulation shows that the latter allows to study
the workload up to the maximum precision (lslot = 1 cycle)
within only 8.2 seconds.

C. Optimality gap analysis

A third experiment was conducted to evaluate the quality
of the deadline-aware solution with respect to the optimal
solution. Since the initial formulation times out to find feasible
solutions for heavy workloads, we only use here the formu-
lation with the reduction technique to find optimal solutions.
We precise that we use a simple iterative algorithm to reduce
incrementally latencies until finding optimal solutions. Table II
shows, for workload sosurajp, the optimality gap evolution and
the required time for the solver to produce optimized solutions
that co-minimize latencies of all workload applications. From
the table we can see that the first solution found by the
solver within 8.2 seconds (same as in Fig. 5) is far from
the optimal solution between 0.41% for Sobel and 6.28% for
RASTA-PLP. Table II shows that the optimal latencies are
reached for Sobel, SUSAN, RASTA-PLP and JPEG respectively
after 68.91s, 402.91s, 615.2s and 660.07s. Hence, the global
optimal solution (i.e., 0% gap for all applications) was also

sobel susan rasta sora sosu sura sosura jpeg sojp sujp sosujp sorajp rajp surajp sosurajp
Workload

10 2

10 1

100

101

102

103

So
lv

er
 ru

nt
im

e
in

 se
co

nd
s (

lo
g)

timeout = 1800s

3
11

38 57

402 542 1077

0.017 0.023

1.9 2.1 1.0 1.9 2.5 1.5 1.9 1.9 3.0
6.7 7.4 7.4 8.2

before reduction
after reduction

Fig. 5. Solver run-time to produce a deadline-aware solution, as a function
of different workloads using initial formulation and optimized formulation, 1
slot = 1 cycle.

10 9 8 7 6 5 4 3 2 1
Granularity (#cycles/slot)

100

101

102

103

So
lv

er
 ru

nt
im

e
in

 se
co

nd
s (

lo
g)

timeout = 1800s

118 140 121
232 269

334
605

1178

0.9 1.0 1.0 1.1 1.0 1.1 1.3
2.0

4.0
8.2

before reduction
after reduction

Fig. 6. Solver run-time to produce a deadline-aware solution, as a function
of exploration granularity using initial formulation and optimized formulation
for workload sosurajp.

found before the time limit. We precise that our main focus
is on finding a deadline-aware solution. However, a user can
also use our framework to find the optimum.

TABLE II
OPTIMALITY GAP EVOLUTION IN FUNCTION OF SOLVER RUN-TIME FOR
WORKLOAD SOSURAJP USING OPTIMIZED FORMULATION. TIMEOUT OF

1800S.

Optimality gap Run-time (s)sobel susan rasta jpeg
0.41% 2.63% 6.28% 0.49% 8.2
0.20% 2.46% 6.28% 0.49% 44.78

0% 2.28% 6.28% 0.49% 68.91
0% 1.67% 5.91% 0.49% 150.62
0% 0.35% 4.81% 0.49% 357.04
0% 0% 4.62% 0.49% 402.91
0% 0% 3.88% 0.49% 439.38
0% 0% 2.96% 0.49% 480.18
0% 0% 1.85% 0.49% 527.36
0% 0% 1.48% 0.44% 551.09
0% 0% 1.11% 0.38% 572.59
0% 0% 0% 0.38% 615.20
0% 0% 0% 0.22% 634.62
0% 0% 0% 0.11% 647.92
0% 0% 0% 0% 660.07

All experiments were conducted on a Linux notebook with
Intel Core i5 processor at 2.50 GHz with 16 GB of RAM
memory, running release 4.8.7 of Z3 SMT solver (default
configuration).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a SMT formulation for the
Design Space Exploration of data-flow systems on hetero-
geneous architectures with segmented bus interconnects. To
the best of our knowledge, this is the first formulation to
target multi-bus interconnects. To mitigate the design space
explosion problem, we also proposed a solution that statically
analyzes the application dependency graphs and narrows down
the domains of variables related to the scheduling of functions
on time-shared resources. We integrated these contributions in
a UML/SysML design tool and illustrated how the resulting
framework holistically studies the mapping, scheduling and
interconnect configuration, i.e., scheduling and routing of com-
munications within and between segments, partitioning of a
segment time slots to different communications. An interesting
direction for future work is to the inclusion of a power model
to investigate the interconnect power consumption.

ACKNOWLEDGMENT

The work in this paper is funded by Nokia Bell Labs France.
It is part of an academic partnership between Nokia Bell
Labs France and Telecom Paris on Models and Platforms for
Network Configuration and Reprogrammability.

REFERENCES

[1] J. Y. Chen, W. B. Jone, J. S. Wang, H. . Lu, and T. F. Chen, “Segmented
bus design for low-power systems,” IEEE Trans. on VLSI Systems, vol. 7,
no. 1, pp. 25–29, 1999.

[2] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in TACAS,
2008, pp. 337–340.

[3] IBM, “Mathematical programming vs constraint programming,”
http://ibmdecisionoptimization.github.io/docplex-doc/mp vs cp.html.

[4] T. Davidovi, L. Liberti, N. Maculan, and N. Mladenovic, “Mathematical
programming-based approach to scheduling of communicating tasks,” 01
2005.

[5] W. Steiner, “An Evaluation of SMT-Based Schedule Synthesis for Time-
Triggered Multi-hop Networks,” in RTSS, 2010, pp. 375–384.

[6] S. Voss and B. Schtz, “Deployment and scheduling synthesis for mixed-
critical shared-memory applications,” in ECBS, 2013, pp. 100–109.

[7] S. Voss, J. Eder, and F. Hölzl, “Design Space Exploration and its
Visualization in AUTOFOCUS3,” in SE Workshop, vol. 1129, 2014, pp.
57–66.

[8] Z. Cheng, H. Zhang, Y. Tan, and Y. Lim, “SMT-Based Scheduling for
Overloaded Real-Time Systems,” IEICE Transactions on Information
and Systems, vol. E100.D, pp. 1055–1066, 2017.

[9] K. Rosvall and I. Sander, “A constraint-based design space exploration
framework for real-time applications on MPSoCs,” in DATE, 2014, pp.
1–6.

[10] K. Rosvall and I. Sander, “Flexible and Tradeoff-Aware Constraint-
Based Design Space Exploration for Streaming Applications on Het-
erogeneous Platforms,” ACM TODAES, vol. 23, no. 2, pp. 21:1–21:26,
2017.

[11] K. Rosvall, T. Mohammadat, G. Ungureanu, J. berg, and I. Sander, “Ex-
ploring Power and Throughput for Dataflow Applications on Predictable
NoC Multiprocessors,” in DSD, 2018, pp. 719–726.

[12] P. Tendulkar, “Mapping and Scheduling on Multi-core Processors using
SMT Solvers,” Ph.D. dissertation, University of Grenoble, 2014.

[13] TTool, http://ttool.telecom-paristech.fr/diplodocus.html, 2006.
[14] I. Sander, “System Modeling and Design Refinement in ForSyDe,” Ph.D.

dissertation, Royal Institute of Technology (KTH), 2003.
[15] J. E. Kelley and M. R. Walker, “Critical-path planning and scheduling,”

in IRE-AIEE-ACM, 1959, pp. 160–173.
[16] E. Kang, E. Jackson, and W. Schulte, “An Approach for Effective Design

Space Exploration,” in Foundations of Computer Software. Modeling,
Development, and Verification of Adaptive Systems, 2011, pp. 33–54.

