A. Ben-cohen, E. Klang, S. Raskin, S. Soffer, S. Ben-haim et al., Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection, Engineering Applications of Artificial Intelligence, vol.78, pp.186-194, 2018.

C. Chen, Q. Dou, Y. Jin, H. Chen, J. Qin et al., Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion, In: MICCAI. vol, vol.11766, pp.447-456, 2019.

R. Dorent, S. Joutard, M. Modat, S. Ourselin, and T. Vercauteren, Hetero-Modal Variational Encoder-Decoder for Joint Modality Completion and Segmentation, In: MICCAI, vol.11765, pp.74-82, 2019.

M. Havaei, N. Guizard, N. Chapados, and Y. Bengio, HeMIS: Hetero-Modal Image Segmentation, MICCAI. vol, vol.9901, pp.469-477, 2016.

G. Hinton, O. Vinyals, and J. Dean, Distilling the Knowledge in a Neural Network, Deep Learning and Representation Learning Workshop: NIPS 2015, 2015.

N. Ibtehaz and M. S. Rahman, MultiResUNet : Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation, Neural Networks, vol.121, pp.74-87, 2020.

F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-hein, No New-Net. In: BrainLes -MICCAI Workshop, vol.11384, pp.234-244, 2019.

Y. Liu, K. Chen, C. Liu, Z. Qin, Z. Luo et al., Structured Knowledge Distillation for Semantic Segmentation, CVPR, pp.2604-2613, 2019.

D. Lopez-paz, L. Bottou, B. Schölkopf, and V. Vapnik, Unifying distillation and privileged information, 2016.

O. Maier, ISLES 2015 -A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI, Medical Image Analysis, vol.35, pp.250-269, 2017.

B. H. Menze, The multimodal brain tumor image segmentation benchmark (BRATS), IEEE Transactions on Medical Imaging, vol.34, issue.10, pp.1993-2024, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00935640

M. Orbes-arteaga, M. J. Cardoso, L. Sørensen, M. Modat, S. Ourselin et al., Simultaneous synthesis of FLAIR and segmentation of white matter hypointensities from T1 MRIs, 2018.

G. Van-tulder and M. De-bruijne, Why Does Synthesized Data Improve Multisequence Classification?, In: MICCAI. vol, vol.9349, pp.531-538, 2015.

V. Vapnik and R. Izmailov, Learning using privileged information: Similarity control and knowledge transfer, Journal of Machine Learning Research, vol.16, issue.61, pp.2023-2049, 2015.

J. Xie, B. Shuai, J. F. Hu, J. Lin, and W. S. Zheng, Improving Fast Segmentation With Teacher-student Learning, British Machine Vision Conference (BMVC), 2018.