N. Dataset,

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau et al., Learning to learn by gradient descent by gradient descent, Advances in neural information processing systems, pp.3981-3989, 2016.

W. H. Beluch, T. Genewein, A. Nürnberger, and J. M. Köhler, The power of ensembles for active learning in image classification, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.9368-9377, 2018.

C. M. Bishop, Pattern recognition and machine learning, 2006.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, Weight uncertainty in neural network, Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol.37, pp.7-09, 2015.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, Weight uncertainty in neural networks, 2015.

G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, Segmentation and recognition using structure from motion point clouds. In: European conference on computer vision, pp.44-57, 2008.

C. Chen, C. X. Lu, A. Markham, and N. Trigoni, Ionet: Learning to cure the curse of drift in inertial odometry, The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), 2018.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, CARLA: An open urban driving simulator, Proceedings of the 1st Annual Conference on Robot Learning, pp.1-16, 2017.

Y. Gal and Z. Ghahramani, Dropout as a bayesian approximation: Representing model uncertainty in deep learning, international conference on machine learning, pp.1050-1059, 2016.

Y. Gal, J. Hron, and A. Kendall, Concrete dropout. In: NIPS, 2017.

X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp.249-256, 2010.

A. Graves, Practical variational inference for neural networks, Advances in neural information processing systems, pp.2348-2356, 2011.

M. S. Grewal, , 2011.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, On calibration of modern neural networks, Proceedings of the 34th International Conference on Machine Learning, vol.70, 2017.

T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel, Backprop kf: Learning discriminative deterministic state estimators, Advances in Neural Information Processing Systems, pp.4376-4384, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, Proceedings of the IEEE international conference on computer vision, pp.1026-1034, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.

D. Hendrycks, S. Basart, M. Mazeika, M. Mostajabi, J. Steinhardt et al., A benchmark for anomaly segmentation, 2019.

D. Hendrycks and K. Gimpel, A baseline for detecting misclassified and out-ofdistribution examples in neural networks, 2016.

J. M. Hernández-lobato and R. Adams, Probabilistic backpropagation for scalable learning of bayesian neural networks, International Conference on Machine Learning, pp.1861-1869, 2015.

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015.

P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson, Averaging weights leads to wider optima and better generalization, 2018.

R. E. Kalman, A new approach to linear filtering and prediction problems, Journal of basic Engineering, vol.82, issue.1, pp.35-45, 1960.

A. Kendall, V. Badrinarayanan, and R. Cipolla, Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding, 2015.

A. Kendall and Y. Gal, What uncertainties do we need in bayesian deep learning for computer vision? In: Advances in neural information processing systems, pp.5574-5584, 2017.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.

D. P. Kingma and M. Welling, Auto-encoding variational bayes, 2nd International Conference on Learning Representations, 2014.

A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny images, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, pp.1097-1105, 2012.

B. Lakshminarayanan, A. Pritzel, and C. Blundell, Simple and scalable predictive uncertainty estimation using deep ensembles, Advances in Neural Information Processing Systems, pp.6402-6413, 2017.

J. Lambert, O. Sener, and S. Savarese, Deep learning under privileged information using heteroscedastic dropout, IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.8886-8895, 2018.

J. Lan, R. Liu, H. Zhou, and J. Yosinski, Lca: Loss change allocation for neural network training, Advances in Neural Information Processing Systems, pp.3614-3624, 2019.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.

S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, and D. Batra, Why m heads are better than one: Training a diverse ensemble of deep networks, 2015.

C. Liu, J. Gu, K. Kim, S. G. Narasimhan, and J. Kautz, Neural rgb (r) d sensing: Depth and uncertainty from a video camera, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.10986-10995, 2019.

W. Maddox, T. Garipov, P. Izmailov, D. Vetrov, and A. G. Wilson, A simple baseline for bayesian uncertainty in deep learning, 2019.

J. Mukhoti and Y. Gal, Evaluating bayesian deep learning methods for semantic segmentation, 2018.

R. M. Neal, Bayesian Learning for Neural Networks, 1996.

Y. Ollivier, The extended kalman filter is a natural gradient descent in trajectory space, 2019.

I. Osband, Risk versus uncertainty in deep learning : Bayes , bootstrap and the dangers of dropout, 2016.

I. Osband, J. Aslanides, and A. Cassirer, Randomized prior functions for deep reinforcement learning, 2018.

A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, Enet: A deep neural network architecture for real-time semantic segmentation, 2016.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury et al., Pytorch: An imperative style, high-performance deep learning library, Advances in Neural Information Processing Systems, pp.8024-8035, 2019.

A. Rahimi and B. Recht, Random features for large-scale kernel machines, Advances in neural information processing systems, pp.1177-1184, 2007.

T. Salimans and D. P. Kingma, Weight normalization: A simple reparameterization to accelerate training of deep neural networks, Advances in Neural Information Processing Systems, pp.901-909, 2016.

K. Simonyan and A. Zisserman, Very deep convolutional networks for largescale image recognition, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res, vol.15, issue.1, pp.1929-1958, 2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., Going deeper with convolutions. arxiv 2014, 2014.

M. Teye, H. Azizpour, and K. Smith, Bayesian uncertainty estimation for batch normalized deep networks, 2018.

G. Wang, J. Peng, P. Luo, X. Wang, and L. Lin, Batch kalman normalization: Towards training deep neural networks with micro-batches, 2018.

C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning, vol.2, 2006.

G. Yang, Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation, 2019.

F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao et al., Bdd100k: A diverse driving video database with scalable annotation tooling, 2018.

S. Zagoruyko and N. Komodakis, Wide residual networks, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01832503

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, Pyramid scene parsing network, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.2881-2890, 2017.