H. Chabriat, A. Joutel, M. Dichgans, E. Tournier-lasserve, and M. Bousser, Cadasil, The Lancet Neurology, vol.8, issue.7, pp.643-653, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01812731

C. D. Murray, The physiological principle of minimum work: I. the vascular system and the cost of blood volume, Proceedings of the National Academy of Sciences, vol.12, issue.3, pp.207-214, 1926.

N. W. Witt, N. Chapman, S. A. Mcg, A. V. Thom, K. H. Stanton et al., A novel measure to characterise optimality of diameter relationships at retinal vascular bifurcations, Artery Research, vol.4, issue.3, pp.75-80, 2010.

T. Luo, T. J. Gast, T. J. Vermeer, and S. A. Burns, Retinal vascular branching in healthy and diabetic subjects, Investigative Ophthalmology & Visual Science, vol.58, issue.5, pp.2685-2694, 2017.

N. Chapman, N. Witt, X. Gao, A. A. Bharath, A. V. Stanton et al., Computer algorithms for the automated measurement of retinal arteriolar diameters, British Journal of Ophthalmology, vol.85, issue.1, pp.74-79, 2001.

N. Lermé, F. Rossant, I. Bloch, M. Paques, E. Koch et al., A fully automatic method for segmenting retinal artery walls in adaptive optics images, Pattern Recognition Letters, vol.72, pp.72-81, 2016.

I. Trimeche, F. Rossant, I. Bloch, and M. Paques, Segmentation of retinal arterial bifurcations in 2D adaptive optics ophthalmoscopy images, IEEE International Conference on Image Processing, pp.1490-1494, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02559281

M. Errera, M. Laguarrigue, F. Rossant, E. Koch, C. Chaumette et al., High-resolution imaging of retinal vasculitis by flood illumination adaptive optics ophthalmoscopy: A follow-up study, Ocular Immunology and Inflammation, pp.1-10, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02426467

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp.234-241, 2015.

G. Lepetit-aimon, R. Duval, and F. Cheriet, Large receptive field fully convolutional network for semantic segmentation of retinal vasculature in fundus images, First International Workshop, COMPAY 2018, and 5th International Workshop, pp.201-209, 2018.

F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. Dally et al., SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size, 2016.

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet classification with deep convolutional neural networks, Neural Information Processing Systems, vol.25, 2012.

D. Li, D. A. Dharmawan, B. P. Ng, and S. Rahardja, Residual U-Net for retinal vessel segmentation, IEEE International Conference on Image Processing, pp.1425-1429, 2019.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, IEEE Conference on Computer Vision and Pattern Recognition, vol.216, pp.770-778

J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, and B. Van-ginneken, Ridge-based vessel segmentation in color images of the retina, IEEE Transactions on Medical Imaging, vol.23, issue.4, pp.501-509, 2004.

A. D. Hoover, V. Kouznetsova, and M. Goldbaum, Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response, IEEE Transactions on Medical Imaging, vol.19, issue.3, pp.203-210, 2000.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, Inception-v4, Inception-ResNet and the impact of residual connections on learning, AAAI Conference on Artificial Intelligence, pp.4278-4284, 2017.

A. Buslaev, A. Parinov, E. Khvedchenya, V. Iglovikov, and A. Kalinin, Albumentations: fast and flexible image augmentations, Information, vol.11, issue.2, pp.125-144, 2020.

J. Deng, W. Dong, R. Socher, L. Li, K. Li et al., ImageNet: A large-scale hierarchical image database, IEEE Conference on Computer Vision and Pattern Recognition, pp.248-255, 2009.

D. Kingma and J. Ba, Adam: A method for stochastic optimization, International Conference on Learning Representations, 2015.

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, vol.1, issue.4, pp.321-331, 1988.

F. Rossant, I. Bloch, I. Ghorbel, and M. Paques, Parallel double snakes. Application to the segmentation of retinal layers in 2D-OCT for pathological subjects, Pattern Recognition, vol.48, pp.3857-3870, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01567285

S. Ramcharitar, Y. Onuma, J. Aben, C. Consten, B. Weijers et al., A novel dedicated quantitative coronary analysis methodology for bifurcation lesions, EuroIntervention: Journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, vol.3, issue.5, pp.553-557, 2008.