J. Bian, Z. Li, N. Wang, H. Zhan, C. Shen et al., Unsupervised scale-consistent depth and ego-motion learning from monocular video, 2019.

F. M. Cariucci, L. Porzi, B. Caputo, E. Ricci, and S. Bulò, Autodial: Automatic domain alignment layers, ICCV, pp.5077-5085, 2017.

V. Casser, S. Pirk, R. Mahjourian, and A. Angelova, Depth prediction without the sensors: Leveraging structure for unsupervised learning from monocular videos, AAAI, vol.33, pp.8001-8008, 2019.

A. Chaudhry, K. Puneet, T. Dokania, P. Ajanthan, and . Torr, Riemannian walk for incremental learning: Understanding forgetting and intransigence, Proceedings of the European Conference on Computer Vision, pp.532-547, 2018.

Y. Chen, C. Schmid, and C. Sminchisescu, Self-supervised learning with geometric constraints in monocular video: Connecting flow, depth, and camera, Proceedings of the IEEE International Conference on Computer Vision, pp.7063-7072, 2019.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler et al., The cityscapes dataset for semantic urban scene understanding, CVPR, pp.3213-3223, 2016.

G. Csurka, Domain adaptation for visual applications: A comprehensive survey, 2017.

G. Tom-van-dijk and . De-croon, How do neural networks see depth in single images? In ICCV, 2019.

D. Eigen and R. Fergus, Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture, ICCV, pp.2650-2658, 2015.

D. Eigen, C. Puhrsch, and R. Fergus, Depth map prediction from a single image using a multi-scale deep network, NeurIPS, pp.2366-2374, 2014.

J. M. Facil, B. Ummenhofer, H. Zhou, L. Montesano, T. Brox et al., Camconvs: Camera-aware multi-scale convolutions for singleview depth, CVPR, 2019.

C. Finn, P. Abbeel, and S. Levine, Modelagnostic meta-learning for fast adaptation of deep networks, ICML, pp.1126-1135, 2017.

H. Fu, M. Gong, and C. Wang, Deep ordinal regression network for monocular depth estimation, CVPR, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01741163

A. Gaidon and Q. Wang, Yohann Cabon, and Eleonora Vig. Virtual worlds as proxy for multi-object tracking analysis, CVPR, pp.4340-4349, 2016.

R. Garg, V. Kumar, B. G. , G. Carneiro, and I. Reid, Unsupervised cnn for single view depth estimation: Geometry to the rescue, ECCV, 2016.

A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous driving? the kitti vision benchmark suite, CVPR, pp.3354-3361, 2012.

C. Godard, O. Mac-aodha, and G. J. Brostow, Unsupervised monocular depth estimation with leftright consistency, CVPR, vol.2, p.7, 2017.

C. Godard, O. M. Aodha, M. Firman, and G. Brostow, Digging into self-supervised monocular depth estimation, 2019.

A. Gordon, H. Li, R. Jonschkowski, and A. Angelova, Depth from videos in the wild: Unsupervised monocular depth learning from unknown cameras, 2019.

Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing et al., Spottune: transfer learning through adaptive fine-tuning, CVPR, pp.4805-4814, 2019.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, CVPR, pp.770-778, 2016.

J. Hu, L. Shen, and G. Sun, Squeeze-and-excitation networks, CVPR, pp.7132-7141, 2018.

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015.

K. Karsch, C. Liu, and S. Kang, Depth transfer: Depth extraction from video using non-parametric sampling, IEEE transactions on pattern analysis and machine intelligence, vol.36, pp.2144-2158, 2014.

P. Diederik, J. Kingma, and . Ba, Adam: A method for stochastic optimization, 2014.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins et al., Overcoming catastrophic forgetting in neural networks, Proceedings of the national academy of sciences, vol.114, pp.3521-3526, 2017.

I. Laina and C. Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir Navab. Deeper depth prediction with fully convolutional residual networks, vol.3, 2016.

Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou, Revisiting batch normalization for practical domain adaptation, 2016.

Z. Li and D. Hoiem, Learning without forgetting. IEEE transactions on pattern analysis and machine intelligence, vol.40, pp.2935-2947, 2017.

B. Liu, S. Gould, and D. Koller, Single image depth estimation from predicted semantic labels, CVPR, pp.1253-1260, 2010.

F. Liu, C. Shen, G. Lin, and I. Reid, Learning depth from single monocular images using deep convolutional neural fields, 2016.

M. Long, H. Zhu, J. Wang, and M. , Deep transfer learning with joint adaptation networks, ICML, pp.2208-2217, 2017.

R. Mahjourian, M. Wicke, and A. Angelova, Unsupervised learning of depth and ego-motion from monocular video using 3d geometric constraints, CVPR, pp.5667-5675, 2018.

M. Mancini, H. Karaoguz, E. Ricci, P. Jensfelt, and B. Caputo, Kitting in the wild through online domain adaptation, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1103-1109, 2018.

M. Mancini, L. Porzi, S. R. Bulò, B. Caputo, and E. Ricci, Boosting domain adaptation by discovering latent domains, CVPR, pp.3771-3780, 2018.

M. Mccloskey, J. Neal, and . Cohen, Catastrophic interference in connectionist networks: The sequential learning problem, Psychology of learning and motivation, vol.24, pp.109-165, 1989.

O. Ostapenko, M. Puscas, T. Klein, P. Jahnichen, and M. Nabi, Learning to remember: A synaptic plasticity driven framework for continual learning, CVPR, pp.11321-11329, 2019.

E. Park, C. Alexander, and . Berg, Meta-tracker: Fast and robust online adaptation for visual object trackers, ECCV, pp.569-585, 2018.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang et al., Automatic differentiation in pytorch, 2017.

H. Sylvestre-alvise-rebuffi, A. Bilen, and . Vedaldi, Learning multiple visual domains with residual adapters, Advances in Neural Information Processing Systems, pp.506-516, 2017.

H. Sylvestre-alvise-rebuffi, A. Bilen, and . Vedaldi, Efficient parametrization of multi-domain deep neural networks, CVPR, pp.8119-8127, 2018.

A. Sylvestre-alvise-rebuffi, G. Kolesnikov, C. H. Sperl, and . Lampert, icarl: Incremental classifier and representation learning, CVPR, 2001.

S. Sankaranarayanan, Y. Balaji, D. Carlos, R. Castillo, and . Chellappa, Generate to adapt: Aligning domains using generative adversarial networks, CVPR, pp.8503-8512, 2018.

S. Sankaranarayanan, Y. Balaji, A. Jain, N. Ser, R. Lim et al., Learning from synthetic data: Addressing domain shift for semantic segmentation, CVPR, pp.3752-3761, 2018.

A. Saxena, M. Sun, and A. Ng, Make3d: Learning 3d scene structure from a single still image, IEEE transactions on pattern analysis and machine intelligence, vol.31, pp.824-840, 2008.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.

K. Tateno, F. Tombari, I. Laina, and N. Navab, Cnn-slam: Real-time dense monocular slam with learned depth prediction, CVPR, pp.6243-6252, 2017.

A. Tonioni, M. Poggi, S. Mattoccia, and L. D. Stefano, Unsupervised adaptation for deep stereo, ICCV, pp.1605-1613, 2017.

A. Tonioni, O. Rahnama, T. Joy, L. D. Stefano, T. Ajanthan et al., Learning to adapt for stereo, CVPR, pp.9661-9670, 2019.

A. Tonioni, F. Tosi, M. Poggi, S. Mattoccia, and L. D. Stefano, Real-time self-adaptive deep stereo, CVPR, 2019.

O. Vinyals, C. Blundell, T. Lillicrap, and D. Wierstra, Matching networks for one shot learning, Advances in neural information processing systems, pp.3630-3638, 2016.

G. Wang, P. Luo, X. Wang, and L. Lin, Kalman normalization: Normalizing internal representations across network layers, Advances in Neural Information Processing Systems, pp.21-31, 2018.

D. Xu, W. Wang, H. Tang, H. Liu, N. Sebe et al., Structured attention guided convolutional neural fields for monocular depth estimation, CVPR, 2018.

N. Yang, R. Wang, J. Stuckler, and D. Cremers, Deep virtual stereo odometry: Leveraging deep depth prediction for monocular direct sparse odometry, ECCV, pp.817-833, 2018.

Z. Yin and J. Shi, Geonet: Unsupervised learning of dense depth, optical flow and camera pose, CVPR, pp.1983-1992, 2018.

Z. Zhang, Z. Cui, C. Xu, Z. Jie, X. Li et al., Joint task-recursive learning for semantic segmentation and depth estimation, In ECCV, 2018.

Z. Zhang, Z. Cui, C. Xu, Z. Jie, X. Li et al., Joint task-recursive learning for rgb-d scene understanding, 2019.

Z. Zhang, Z. Cui, C. Xu, Y. Yan, N. Sebe et al., Pattern-affinitive propagation across depth, surface normal and semantic segmentation, CVPR, pp.4106-4115, 2019.

Z. Zhang, C. Xu, J. Yang, Y. Tai, and L. Chen, Deep hierarchical guidance and regularization learning for end-to-end depth estimation, Pattern Recognition, vol.83, pp.430-442, 2018.

S. Zhao and H. Fu, Mingming Gong, and Dacheng Tao. Geometry-aware symmetric domain adaptation for monocular depth estimation, CVPR, pp.9788-9798, 2019.

C. Zheng, T. Cham, and J. Cai, T2net: Synthetic-to-realistic translation for solving single-image depth estimation tasks, ECCV, pp.767-783, 2018.

Y. Zhong, H. Li, and Y. Dai, Open-world stereo video matching with deep rnn, ECCV, pp.101-116, 2018.

T. Zhou, M. Brown, N. Snavely, and D. Lowe, Unsupervised learning of depth and ego-motion from video, CVPR, 2017.