M. Clark, P. Robertson, and D. A. Luce, A preliminary experiment on the perceptual basis for musical instrument families, Journal of the Audio Engenieering Society, vol.12, pp.199-203, 1964.

S. Mcadams, S. Winsberg, G. De-soete, and K. J. , Perceptual scaling of synthesized musical timbres: common dimensions, specficities and latent subject classes, Psychological Research, issue.58, pp.177-192, 1995.

A. Eronen, Comparison of features for musical instrument recognition, Proceedings of WASPAA, 2001.

J. P. Bello, C. Duxbury, M. Davies, and M. B. Sandler, On the use of phase and energy for musical onset detection in the complex domain, IEEE Signal Processing Letters, 2004.

J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies et al., A tutorial on onset detection in music signals, IEEE Transactions on Speech and Audio Processing, 2005.

P. Leveau, L. Daudet, and G. Richard, Methodology and tools for the evaluation of automatic onset detection algorithms in music, submitted, Proceedings of ISMIR 2004, 2004.

M. Goodwin and C. Avendano, Enhancement of audio signals using transient detection and modification, Proceedings of the 117th AES Convention, 2004.

G. Peeters, A large set of audio features for sound description (similarity and classification) in the cuidado project, 2004.

J. C. Brown, Musical instrument identification using autocorrelation coefficients, International Symposium on Musical Acoustics, pp.291-295, 1998.

A. Eronen, Automatic musical instrument recognition, 2001.

L. R. Rabiner, Fundamentals of Speech Processing. Prentice Hall Signal Processing Series, 1993.

O. Gillet and G. Richard, Automatic transcription of drum loops, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2004.

S. Essid, G. Richard, and B. David, Efficient musical instrument recognition on solo performance music using basic features, AES 25th International Conference, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02946911

, Information technology -multimedia content description interface -part 4: Audio, 2001.

J. C. Brown, O. Houix, and S. Mcadams, Feature dependence in the automatic identification of musical woodwind instruments, Journal of the Acoustical Society of America, vol.109, pp.1064-1072, 2000.

S. Essid, G. Richard, and B. David, Musical instrument recognition based on class pairwise feature selection, 5th International Conference on Music Information Retrieval (ISMIR), 2004.
URL : https://hal.archives-ouvertes.fr/hal-02946907

R. Kohavi and G. John, Wrappers for feature subset selection, Artificial Intelligence Journal, vol.97, issue.1-2, pp.273-324, 1997.

A. L. Blum and P. Langley, Selection of relevant features and examples in machine learning, Artificial Intelligence Journal, vol.97, issue.1-2, pp.245-271, 1997.

I. Guyon and . Elisseeff, An introduction to feature and variable selection, Journal of Machine Learning Research, vol.3, pp.1157-1182, 2003.

G. Peeters, Automatic classification of large musical instrument databases using hierarchical classifiers with inertia ratio maximization, 115th AES convention, 2003.

S. Essid, G. Richard, and B. David, Musical instrument recognition by pairwise classification strategies, IEEE Transactions on Speech and Audio Processing, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00477671

R. Duda and P. E. Hart, Pattern Classification and Scence Analysis, 1973.

V. Vapnik, The nature of statistical learning theory, 1995.

J. C. Christopher and . Burges, A tutorial on support vector machines for pattern recognition, Journal of Data Mining and knowledge Discovery, vol.2, pp.1-43, 1998.

B. Sholkopf and A. J. Smola, Learning with kernels, 2002.

J. C. Platt, Probabilistic outputs for support vector machines and comparisions to regularized likelihood methods, 1999.