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ABSTRACT

Musical instrument recognition is one of the important goals of mu-
sical signal indexing. If much effort has already been dedicated
to the automatic recognition of musical instruments, most studies
were based on limited amounts of data which often included only
isolated notes. In this paper, two statistical approaches, namely the
Gaussian Mixture Model (GMM) and the Support Vector Machines
(SVM), are studied for the recognition of woodwind instruments
using a large database of isolated notes and solo excerpts extracted
from many different sources. Furthermore, it is shown that the use
of Principal Component Analysis (PCA) to transform the feature
data significantly increases the recognition accuracy. The recogni-
tion rates obtained range from 52.0 % for Bb Clarinet up to 96.0 %
for Oboe.

1. INTRODUCTION

Musical instrument recognition has gained more and more interest
as the need for multimedia description tools has become obvious
in the lights of the MPEG-7 standardization effort [3]. As far as
musical content is concerned, the challenge is to reach configura-
tions where complex mixtures of sound could be fully labeled (for
example, in terms of mode, style and rhythm,...) and furthermore
indexed in terms of musical events in order to permit, at a very high
level of description, the extraction of a score-type representation.
One could then be able to formulate requests such as “find Jazz
trumpet solo parts played inC# in the middle of a musical database”.

The task is very complex and many problems remain unsolved
given the current state of the art. For instance, very few attempts
have been made on a musical content involving more than one
instrument playing at a time. Previous work on musical instrument
recognition mainly focused on the case where isolated notes were
played motivated by the hypothesis that separation of the different
sound sources in the signal, followed by note segmentation could
be achieved in a first stage of processing (see [8] for a complete
review). Yet, the task of source separation and segmentation can
be even more intricate than source recognition. It is thought that
the most promising approach which moreover could give rise
to immediate applications, is to consider the recognition of solo
musical phrases taken from commercial recordings.

To our knowledge, there was only three studies reporting
significant performance that adopted these conditions, by Brown
et al. [4], Martin [10] and Marques [9]. Both parametric and
non-parametric classification techniques were used. For instance,
encouraging results have been found with Gaussian Mixture
Models (GMM) and Support Vector Machines (SVM) which have
proven successful in various classification tasks, particularly in
speech recognition and speaker identification. Unfortunately,
in contrast to the speech/speaker community, there has been no

specific common sound database of musical solo excerpts of
appropriate size and with enough diversity that could have been
used for evaluating the relative performance of the proposed
musical instrument recognition systems.

In this work, two statistical approaches, namely the Gaussian
Mixture Model (GMM) and the Support Vector Machines (SVM),
are studied for the recognition of woodwind instruments using a
large database of isolated notes and solo excerpts extracted from
many different sources. Our work extends Marques study [9] in
using much larger sound databases for both training and testing and
in introducing Principal Component Analysis (PCA) to ”de-noise”
the feature space.

The use of a much larger sound database of excerpts recorded
in different conditions, with different instrument instances and
performers clearly permits to better grasp the variability of realistic
situations. The use of such databases is essential to build classifiers
with better recognition accuracy and ability to cope with data
variability.

The paper is organized as follows. In the first place, using Mel-
Frequency Cepstrum Coefficients (MFCC) as features, a study on
isolated notes is presented to test several variations on the classi-
fication strategies for model training and decision rules. Principal
Component Analysis (PCA) is then introduced and its use as pre-
processing to classification is discussed. Finally, GMM and SVM
classification are used on PCA transformed data from recordings
and their performance is compared.

2. FEATURE EXTRACTION

Many features have been proposed for musical instrument
recognition [8] and applied with a certain success in the case
of classification on isolated notes. Nevertheless, many of these
features cannot be extracted in a robust manner, especially when
dealing with phrases from real musical performances. For example,
features related to sound attack, harmonic structure, vibrato and
tremolo, etc., have been found to be very useful [10, 6]. Yet,
the underlying extraction stages, namely, onset detection and
multi-pitch estimation give rise to problems that remain partially
unsolved whenever concurrent notes are played, given the state of
the art.

The Mel-Frequency Cepstral Coefficients (MFCC) have proven
successful for our task [4, 6] and have the advantage of being easily
extracted, therefore they were chosen as features for this study.
Delta Cepstrum is not used, since it was found useless for the
woodwind instrument recognition, consistent with the findings of
Brown [4]. It is important to note that other useful features (related
to spectral shape, for example) could be added, but the primary
goal of this paper is to assess the performance of the classification
techniques on a large sound database considering baseline features



such as MFCCs.

The input signal was down-sampled to a 32 kHz sampling rate,
centered with respect to its temporal mean and its amplitude nor-
malized with respect to its maximum value. The analysis was per-
formed over sliding overlapping windows. The frame length was
32 ms and the hop size 16 ms. The cepstrum was computed with a
FFT after a Hamming window had been applied. Frames consisting
of silence signal were detected thanks to a heuristic approach based
on power thresholding and then discarded. A feature vector con-
sisted of the 10 first cepstral coefficients not including the zeroth
coefficient.

3. THEORETICAL BACKGROUND ON
CLASSIFICATION

3.1 The Gaussian Mixture Model

The Gaussian Mixture model (GMM) has been widely used by the
speech/speaker community since its introduction by Reynolds for
text-independent speaker identification [14]. It was also successful
for musical instrument recognition [9, 4, 6]. In such a model, the
distribution of feature vectors (in our case the feature vectors ofP
MFCCs, withP= 10 for a given instrument class) are modeled by a
Gaussian mixture density. For a given feature vectorx, the mixture
density for instrumentΩk is defined as :

p(x|Ωk) =
M

∑
i=1
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The parameters of the model for the instrumentk, denoted
by λk = {pk

i ,µk
i ,Σk

i }i=1,...,M are estimated thanks to the traditional
Expectation-Maximization (EM) algorithm [11]. Classification is
then usually made by using the Maximuma posterioriProbability
(MAP) decision rule, which thanks to Baye’s rule, can be written as

Ω̂ = arg max
1≤k≤N

T

∑
t=1

logp(xt |Ωk) (3)

whereN is the number of instrument classes,p(xt |Ωk) is given in
(1),xt is the test feature vector observed at timet, andT is the total
number of observations considered in taking decisions.

3.2 Support Vector Machines

The other classification approach used in this study is known as
Support Vectors Machines (SVM) which have been used for vari-
ous classification tasks. Considering two classes, SVM try to find
the hyperplane that separates the features related to each class with
the best possible margin. In the case where the data is non-linearly
separable, SVM map theP-dimensional input feature space into a
higher dimension space where the two classes become linearly sep-
arable, thanks to a Kernel functionK(x,y) such that

K(x,y) = Φ(x).Φ(y),

whereΦ : RP 7−→ H is a map to the high dimension space H. Such
classifiers can perform binary classification and regression estima-
tion tasks but can also be adapted to performN-class classification.

SVM classification is very advantageous in the sensse that it has
interesting generalization properties. Interested readers are referred
to [5] for detailed description and discussion of SVM.

4. EXPERIMENTAL STUDY

4.1 Sound database for isolated note recognition

Three musical note collections were used for a preliminary study,
namely, McGill University Master Samples (MUMS)[12], IRCAM
Studio Online collection (SOL) [1] and the University of Iowa Elec-
tronic Music Studios samples [2]. The aim of this study was to
investigate a number of variations on the classification techniques
with reasonable overall computational cost and provide feedback to
reference work on isolated note recognition. Leave-one-out cross-
validation was used, in the sense that two out of the three collections
were used as training set and the remaining collection was used as
test set with the three possible combinations.

4.2 Sound database for solo phrase recognition

In order to assess the generalization capability of the recognition
system, a great deal of effort has been dedicated to obtain enough
variation in sound material used in our experiments with regard to
recording conditions, performers and instrument instances. Sound
samples were excerpted from CD recordings mainly obtained from
personal collections. The content consisted of classical music, Jazz
music or educative material for music teaching.

The task has been particularly difficult and time-consuming
with some instruments for which unaccompanied solo perfor-
mances may be very uncommon, as it is the case for the Bassoon.
Additionally, Sax and Bb Clarinet solo phrases performed by two
amateur players were recorded at Télécom Paris studio. Although
this study is limited to five woodwind instruments, it is conducted
on a much larger and more varied database than previous studies
allowing to assess the generalization properties of the classification
task. It was thought that it would be more interesting to consider
fewer instruments with enough training and test data than many
instruments with insufficient samples. All note collections were
then included in the training set for the solo phrases recognition
experiments in addition to selected recording samples.

The selection of recording excerpts used in the training set was
made randomly under the constraint that at least 15 minutes of data
were assembled. Ideally, never would the same CD provide ex-
cerpts for both training and test sets, but, in some cases, it hasn’t
been possible to do so without lacking of material either for training
or testing. However, it was made sure that samples used for testing
were never extracted from any tracks that were used in the train-
ing set. All samples not used for training were tested so as to pro-
vide tight confidence ranges on the success rates. Table 1 presents
an overview of the sound database and training/test division. The
amounts of data used in previous work on instrument recognition
on solo phrases are summed up in table 2. Note that much more
data is used in our experiments.

4.3 Study on musical note collections

4.3.1 GMM classification

The GMM was trained with ten iterations of the Expectation
Maximization algorithm. Initialization consisted in clustering the
observation space of accumulated MFCC vectors intoM Voronöı
regions thanks to the LBG quantization procedure. Initial means
of the component densities were taken to be the centroids of the
obtained clusters. Diagonal covariance matrices were used and
initialized with empirical covariance coefficients of MFCCs from



Sources Tracks Train (mn) Test(mn)
Alto Sax 12 150 31.71 1.45
Bassoon 11 115 16.73 1.41
Bb Clarinet 16 155 21.67 7.12
Flute 13 216 27.86 141.49
Oboe 12 133 20.83 52.88

Table 1: Sound database -Sourcesis the number of distinct sources
used;Tracksis the number of tracks from CDs and files from col-
lections;Train, respectivelyTest, is the total length of the training
data, respectively test data, in minutes.

Sources Train (mn) Test(mn)
Brown [4] na 0.9-5.5 1.0-4.0
Martin [10] 2-9 0.23-35.5 0.9-35.5
Marques [9] 2-2 3.4-3.4 0.3-0.3

Table 2: Sound database -Sourcesis the number of distinct sources
used;Train, respectivelyTest, is the total length of the training data,
respectively test data, in minutes, minimum and maximum dura-
tions are given. na stands for not available.

every Voronöı region. The number of components in the mixture
was varied from 4 to 16.M = 16 gave the best results. Recognition
was made by taking decisions every 0.469 s corresponding to the
accumulation ofT = 30 observation frames.

Three decision rules were considered depending on the
chosen classification strategy, namely MAP decision, ”one Vs
one” and ”one Vs all”. Note that, when considering the ”one
Vs all” approach, one must set up two models for each class
Ωk,with k = 1, ...,5 : one modelλk for Ωk, but also one model,̄λk
for the data representing all classes butΩk, referred to as̄Ωk. For
the ”one Vs all” approach, a given test framext was classified as
belonging to classΩk if Prob(xt |λk) ≥ Prob(xt |λ̄k) and the class
with the largest positive outputs overT observations was selected.
For the ”one Vs one” case, a ”majority vote” rule was applied over
all possible pairs and overT observations.

Table 3 shows the recognition results obtained with leave-
one-out cross-validation for the note collections. The ”one Vs
one” approach yielded results very close to those obtained with
the ”one Vs all” approach, thus they are not presented here. ”one
Vs all” performed slightely better than MAP but the improvement
remains quite small in most cases. Nevertheless, ”one Vs all”
can be more advantageous in a scheme where instrument-specific
parametrisation would be aimed at. For example, one could use
feature vectors consisting ofP MFCCs to train modelsλi and
λ̄i associated with instrumenti, and feature vectors consisting
of P′ 6= P MFCCs to train modelsλ j and λ̄ j associated with
instrument j, and use the same decision rule as described above.
Future work will consider such schemes which hold promise.

Finally, note that the recognition accuracy of different instru-
ments should not be compared without prior normalization since
inequivalent training/test sets were used.

4.3.2 SVM classification

The ”one Vs one” approach was used to classify the five instru-
ments. It was preferred to the ”one vs all” approach for compu-
tational cost reasons, since the data to be considered to compute
the optimal hyperplane separating one instrument from all others is
much larger. Several kernels were tested, including linear, polyno-
mial and Radial Basis Function. Polynomial parameters were also
varied. Best results were achieved using linear and polynomial ker-

% correct MAP one Vs all
Alto Sax 55.7 61.4
Bassoon 84.3 86.8
Bb Clarinet 30.2 32.8
Flute 67.7 68.0
Oboe 70.9 70.3

Table 3: Performance of isolated note classification with GMM.

nels. The used polynomial kernel has the form

K(x,y) = (sx.y+c)d. (4)

Parameterssandc were chosen to be equal to 1 after testing. Param-
eterd was varied from 2 to 4. Recognition accuracy with the best
tested kernels is shown in table 4 in terms of percentage correct. It
seems that using the linear kernel is very advantageous, since it is
computationally inexpensive and performs well in most cases.

% correct Linear Poly (d=2) Poly (d=3) Poly (d=4)
Alto Sax 73.4 69.2 69.9 69.0
Bassoon 88.0 88.0 87.2 87.6
Bb Clarinet 31.2 33.0 27.0 28.5
Flute 82.8 76.3 86.8 86.4
Oboe 66.9 66.4 74.8 75.9

Table 4: Performance of isolated note classification with SVM us-
ing linear and polynomial kernels.

4.4 Recognition on solo phrases

In this section, we present a study on the recognition of instruments
playing solo phrases. It is shown that transforming the feature data
with PCA enhances the classification performance. This is partic-
ularly important when dealing with data from commercial CDs as
recording conditions may vary significantly.

4.4.1 The use of Principal Component Analysis (PCA)

PCA is often used in classification applications in order to reduce
the dimensionality of the feature space [13]. In fact, it may be used
to ”de-noise” the signal in the sense that the most relevant informa-
tion is concentrated in the first few components of the transformed
feature vectors which correspond to directions of maximum energy.
PCA was performed as follows. A subset of each instrument train-
ing data was taken to form a global training set where each instru-
ment had the same number of feature vectors. The covariance ma-
trix of this selected training data was computed and its Singular
Value Decomposition (SVD) was processed yielding

Rx = UDVt ,

whereRx is the covariance matrix of the selected feature vec-
tors from all instruments,U andV are respectively the left and
the right singular vector matrices, andD is the singular value ma-
trix. The PCA transform matrix was then taken to beW = Vt and
classifiers were trained on the dataY = WX, whereX is the ma-
trix whose columns represent the training feature vectors such that
X = [x1, ...,xθ

]. The same transform matrixW was applied on test
feature vectors.

4.4.2 Results and discussion

Recognition accuracy obtained with a 16-component GMM with
and without PCA is shown in the first two columns of table 5. The
overall recognition accuracy is improved (with up to 7.2 percentage
point improvement for the Flute). Note that rescaling the data in
order to get unit covariance in the transformed PCA space results



in very poor performance with GMM classification. Alternatively,
Independent Component Analysis (ICA) was used in other work
[7] to transform the feature space, yet we found no objective
justification for its utilization. In fact, the improvement achieved
thanks to ICA may only be due to the PCA pre-processing stage of
the ICA algorithm.

Increasing the number of Gaussian components from 16 to 32
resulted in better accuracy except for the Alto Sax indicating that
even more data should be used for training this instrument model.

The best overall recognition accuracy (obtained with PCA
and GMM32) is 67.2 % which can be regarded as ”satisfactory”
considering our working constraints : not only a basic and limited
set of features, namely MFCCs, was used, but also important
variability was introduced in instrument instances, performers and
recording conditions.

One way to improve the recognition accuracy is to increase the
number of frames over which classification decisions are combined
as it is suggested in table 6. In fact, when varying the decision
length from 0.5 s to 10 s, significant enhancement is achieved (up
to 21.9 percentage point improvement for the Alto Sax).

In our simulations, the GMM performed much better than
SVM. Marques [9] reported better results with SVM but only two
component densities were used in the Gaussian mixture as insuffi-
cient data was available for training. Thus, it turns out that GMM
classification provides better recognition accuracy when important
training sets can be used.

GMM16 GMM16 GMM32
PCA × ×
Alto Sax 62.1 63.2 55.5
Bassoon 43.8 50.3 53.7
Clarinet 50.0 46.7 52.0
Flute 62.1 69.3 78.6
Oboe 96.0 95.5 96.0

Table 5: Performance of solo phrases classification with GMM and
PCA transformation (in % correct).

Test Length 1 s 5 s 10 s
Alto Sax 67.0 77.8 88.9
Bassoon 47.7 38.9 44.4
Clarinet 48.8 55.1 55.6
Flute 73.5 88.2 93.7
Oboe 96.3 98.3 98.4

Table 6: Performance of solo phrases classification with GMM16
and PCA transformation for different decision lengths (in % cor-
rect).

5. CONCLUSION

In this paper, recognition of musical instruments playing solo
phrases was addressed. Two classification schemes, parametric
and non-parametric, were considered, namely GMM and SVM,
with a number of variations. Classifiers were trained on important
data sets which allowed better performance with GMM. The use
of PCA to transform the feature data was discussed and resulted in

increased performance. Very high recognition accuracy, with larger
test data, was achieved for the Flute and the Oboe under changing
recording conditions and with several different instrument instances
and performers.

Future work will consider more features better adapted to our
task, which is a key issue for better overall performance. Addi-
tionally, more instrument classes will be considered and dynamic
models such as Hidden Markov Models in association with SVM
will be aimed at.
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and Claire Waast-Richard for fruitful discussions on current classi-
fication and speech recognition technologies.

REFERENCES

[1] Ircam studio online. http://www.ircam.fr.
[2] The university of iowa electronic music studios.

http://theremin.music.uiowa.edu.
[3] Information technology - multimedia content description in-

terface - part 4: Audio, jun 2001. ISO/IEC FDIS 15938-
4:2001(E).

[4] Judith C. Brown, Olivier Houix, and Stephen McAdams. Fea-
ture dependence in the automatic identification of musical
woodwind instruments.Journal of the Acoustical Society of
America, 109(3):1064–1072, mar 2000.

[5] Christopher J.C. Burges. A tutorial on support vector ma-
chines for pattern recognition.Journal of Data Mining and
knowledge Discovery, 2(2):1–43, 1998.

[6] Antti Eronen. Automatic musical instrument recognition.
Master’s thesis, Tampere University of Technology, apr 2001.

[7] Antti Eronen. Musical instrument recognition using ica-based
transform of features and discriminatively trained hmms. In
Seventh International Symposium on Signal Processing and
Its Applications, pages 133–136, July 2003.

[8] P. Herrera, G. Peeters, and Dubnov S. Automatic classifica-
tion of musical instrument sounds.New Music Research, 32.1,
2003.

[9] Janet Marques and Pedro J. Moreno. A study of musical
instrument classification using gaussian mixture models and
support vector machines. Technical report, 1999.

[10] Keith Dana Martin. Sound-Source Recognition : A Theory
and Computational Model. PhD thesis, Massachusets Institue
of Technology, jun 1999.

[11] Todd K. Moon. The expectation-maximization algorithm.
IEEE Signal processing magazine, pages 47–60, nov 1996.

[12] F. Opolko and J. Wapnick. Mcgill university master samples.
McGill University, 1987.

[13] M. Partridge and M. Jabri. Robust principal component analy-
sis. InIEEE Signal Processing Society Workshop, pages 289–
298, dec 2000.

[14] D. Reynolds. Speaker identification and verification using
gaussian mixture speaker models.Speech Communication,
17:91–108, 19905.


