. Cisco, Cisco visual networking index: Forecast and methodology, 2017.

A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann, A survey on bitrate adaptation schemes for streaming media over http, IEEE Communications Surveys Tutorials, vol.21, issue.1, 2019.

D. S. Berger, Towards lightweight and robust machine learning for cdn caching, Proc of the 17th ACM Workshop on Hot Topics in Networks, 2018.

M. Claeys, S. Latré, J. Famaey, and F. De-turck, Design and evaluation of a self-learning http adaptive video streaming client, IEEE Communications Letters, vol.18, issue.4, 2014.

T. T. Nguyen and G. Armitage, A survey of techniques for internet traffic classification using machine learning, IEEE Communications Surveys Tutorials, vol.10, issue.4, 2008.

D. Liu, Y. Li, J. Lin, H. Li, and F. Wu, Deep learning-based video coding: A review and a case study, ACM Comput. Surv, vol.53, issue.1, 2020.

Y. Chien, K. C. Lin, and M. Chen, Machine learning based rate adaptation with elastic feature selection for http-based streaming, IEEE International Conference on Multimedia and Expo (ICME), 2015.

A. Lekharu, S. Kumar, A. Sur, and A. Sarkar, A qoe aware lstm based bit-rate prediction model for dash video, 2018 10th International Conference on Communication Systems Networks (COMSNETS), 2018.

J. Kua, G. Armitage, and P. Branch, A survey of rate adaptation techniques for dynamic adaptive streaming over http, IEEE Communications Surveys Tutorials, vol.19, issue.3, 2017.

T. Huang, R. Johari, N. Mckeown, M. Trunnell, and M. Watson, A buffer-based approach to rate adaptation: Evidence from a large video streaming service, Proceedings of the 2014 ACM Conference on SIGCOMM, 2014.

K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, Bola: Near-optimal bitrate adaptation for online videos, INFOCOM, 2016.

Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu et al., Probe and adapt: Rate adaptation for http video streaming at scale, IEEE Journal on Selected Areas in Communications, vol.32, issue.4, 2014.

J. Jiang, V. Sekar, and H. Zhang, Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive, Proc of Conference on Emerging Networking Experiments and Technologies, 2012.

X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, A control-theoretic approach for dynamic adaptive video streaming over http, SIGCOMM Comput. Commun. Rev, vol.45, issue.4, 2015.

S. B. Kotsiantis, Supervised machine learning: A review of classification techniques, Informatica, 2007.

S. K. Murthy, Automatic construction of decision trees from data: A multi-disciplinary survey, Data Mining and Knowledge Discovery, vol.2, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00442435

L. Breiman, Random forests, Machine Learning, vol.45, 2001.

Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences, vol.55, issue.1, 1997.

J. H. Friedman, Greedy function approximation: A gradient boosting machine, The Annals of Statistics, vol.29, issue.5, 2001.

T. Cover and P. Hart, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, vol.13, issue.1, 1967.

C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn, vol.20, issue.3, 1995.

H. Yousef, J. Le-feuvre, P. Ageneau, and A. Storelli, Enabling adaptive bitrate algorithms in hybrid cdn/p2p networks, Proceedings of the 11th ACM Multimedia Systems Conference, ser. MMSys '20, 2020.

H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, Commute path bandwidth traces from 3g networks: analysis and applications, 2013.

J. Van-der-hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface et al., Http/2-based adaptive streaming of hevc video over 4g/lte networks, IEEE Communications Letters, vol.20, issue.11, 2016.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in python, J. Mach. Learn. Res, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

K. P. Murphy, Machine Learning: A Probabilistic Perspective, 2012.