K. Sterling and . Berberian, Notes on spectral theory, Van Nostrand Mathematical Studies, issue.5, 1966.

I. Berkes, L. Horváth, and G. Rice, On the asymptotic normality of kernel estimators of the long run covariance of functional time series, Journal of Multivariate Analysis, vol.144, pp.150-175, 2016.

D. Bosq, Linear processes in function spaces, Lecture Notes in Statistics, vol.149, 2000.

V. Characiejus and A. Ra?kauskas, The central limit theorem for a sequence of random processes with space-varying long memory, Lithuanian mathematical journal, vol.53, issue.2, pp.149-160, 2013.

V. Characiejus and A. Ra?kauskas, Operator self-similar processes and functional central limit theorems, Stochastic Processes and their Applications, vol.124, pp.2605-2627, 2014.

J. B. Conway, A Course in Functional Analysis, 1994.

A. Van-delft, A note on quadratic forms of stationary functional time series under mild conditions, Stochastic Processes and their Applications, 2019.

A. Durand and F. Roueff, Spectral analysis of weakly stationary processes valued in a separable Hilbert space, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02318267

M. Düker, Limit theorems for Hilbert space-valued linear processes under long range dependence, Stochastic Processes and their Applications, vol.128, pp.1439-1465, 2018.

I. Gohberg and J. Leiterer, Holomorphic operator functions of one variable and applications, vol.192, 2009.

S. Hörmann and P. Kokoszka, Weakly dependent functional data. The annals of statistics, vol.38, pp.1845-1884, 2010.

S. Hörmann, L. Kidzi?ski, and M. Hallin, Dynamic functional principal components, J. R. Stat. Soc. Ser. B. Stat. Methodol, vol.77, issue.2, pp.319-348, 2015.

L. Horváth and P. Kokoszka, Inference for Functional Data with Applications

, Springer Series in Statistics, 2012.

L. Horváth, P. Kokoszka, and R. Reeder, Estimation of the mean of functional time series and a two-sample problem, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.75, issue.1, pp.103-122, 2013.

Y. Kakihara, Multidimensional Second Order Stochastic Processes, 1997.

J. Klepsch, C. Klüppelberg, and T. Wei, Prediction of functional ARMA processes with an application to traffic data, Econometrics and Statistics, vol.1, pp.128-149, 2017.

P. Kokoszka, Dependent functional data. ISRN Probability and Statistics, 2012.

P. Kokoszka and N. , Frequency domain theory for functional time series: Variance decomposition and an invariance principle, Bernoulli, vol.26, issue.3, pp.2383-2399

D. Li, P. M. Robinson, and H. L. Shang, Long-range dependent curve time series, Journal of the American Statistical Association, vol.115, issue.530, pp.957-971, 2020.

M. Victor, S. Panaretos, and . Tavakoli, Fourier analysis of stationary time series in function space, Ann. Statist, vol.41, issue.2, pp.568-603, 2013.

M. Victor, S. Panaretos, and . Tavakoli, Cramer-karhunen-loeve representation and harmonic principal component analysis of functional time series, Stochastic Processes And Their Applications, vol.123, pp.29-2779, 2013.

V. Pipiras and M. S. Taqqu, Long-Range Dependence and Self-Similarity, Cambridge Series in Statistical and Probabilistic Mathematics, 2017.

A. Ra?kauskas and C. Suquet, Operator fractional brownian motion as limit of polygonal lines processes in hilbert space, Stochastics and Dynamics, vol.11, issue.01, pp.49-70, 2011.

F. Spangenberg, Strictly stationary solutions of ARMA equations in Banach spaces, Journal of Multivariate Analysis, vol.121, pp.127-138

S. Tavakoli, Fourier Analysis of Functional Time Series, with Applications to DNA Dynamics, 2014.