M. C. Mahoney and M. S. Newell, Screening MR imaging versus screening ultrasound: pros and cons, Magnetic Resonance Imaging Clinics, vol.21, issue.3, pp.495-508, 2013.

M. Amin-naji and A. Aghagolzadeh, Multi-focus image fusion in DCT domain using variance and energy of Laplacian and correlation coefficient for visual sensor networks, Journal of AI and Data Mining, vol.6, pp.233-250, 2018.

J. Du, W. Li, K. Lu, and B. Xiao, An overview of multi-modal medical image fusion, Neurocomputing, vol.215, pp.3-20, 2016.

A. P. James and B. V. Dasarathy, Medical image fusion: A survey of the state of the art, Information Fusion, vol.19, pp.4-19, 2014.

A. Loza, D. Bull, N. Canagarajah, and A. Achim, Non-Gaussian model-based fusion of noisy images in the wavelet domain, Computer Vision and Image Understanding, vol.114, issue.1, pp.54-65, 2010.

D. W. Townsend and T. Beyer, A combined PET/CT scanner: the path to true image fusion, The British journal of radiology, vol.75, pp.24-30, 2002.

S. Gautier, G. L. Besnerais, A. Mohammad-djafari, and L. Blandine, Data fusion in the field of non destructive testing, Maximum Entropy and Bayesian Methods, pp.311-316, 1996.

O. E. Mansouri, F. Vidal, A. Basarab, P. Payoux, D. Kouamé et al., Fusion of magnetic resonance and ultrasound images for endometriosis detection, IEEE Trans. Image Process, vol.29, pp.5324-5335, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02538458

N. Eslahi and A. Foi, Joint sparse recovery of misaligned multimodal images via adaptive local and nonlocal cross-modal regularization, Proc. IEEE Int. Workshop Comput. Adv. Multi-Sensor Adaptive Process. (CAMSAP), 2019.

A. Yavariabdi and A. Bartoli, Mapping and characterizing endometrial implants by registering 2D transvaginal ultrasound to 3D pelvic magnetic resonance images, Computerized Medical Imaging and Graphics, vol.45, pp.11-25, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01598206

F. Shi, J. Cheng, L. Wang, P. Yap, and D. Shen, LRTV: MR image super-resolution with low-rank and total variation regularizations, IEEE Trans. Med. Imaging, vol.34, pp.2459-2466, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01154770

D. Kundu and M. Z. Raqab, Generalized Rayleigh distribution: different methods of estimations, Computational statistics & data analysis, vol.49, pp.187-200, 2005.

T. Tuthill, R. Sperry, and K. Parker, Deviations from Rayleigh statistics in ultrasonic speckle, Ultrasonic imaging, vol.10, issue.2, pp.81-89, 1988.

A. Roche, X. Pennec, G. Malandain, and N. Ayache, Rigid registration of 3D ultrasound with MR images: a new approach combining intensity and gradient information, IEEE Trans. Med. Imaging, vol.20, issue.10, pp.1038-1049, 2001.
URL : https://hal.archives-ouvertes.fr/cea-00333699

O. E. Mansouri, A. Basarab, F. Vidal, D. Kouamé, and J. Tourneret, Fusion of magnetic resonance and ultrasound images: A preliminary study on simulated data, Proc. IEEE Int. Symp. Biomed. Imaging (ISBI), pp.1733-1736, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02612936

J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization or nonconvex and nonsmooth problems, Mathematical Programming, vol.146, issue.1-2, pp.459-494, 2014.

F. Vidal, O. E. Mansouri, D. Kouamé, and A. Basarab, On the design of a pelvic phantom for magentic resononance and utltrasound image fusion, 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, pp.2400-2403, 2019.

M. Welvaert and Y. Rosseel, On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data, PloS one, vol.8, issue.11, p.77089, 2013.

R. Morin, A. Basarab, S. Bidon, and D. Kouamé, Motion estimation-based image enhancement in ultrasound imaging, Ultrasonics, vol.60, pp.19-26, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01278901