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Narrow River Extraction from SAR Images
Using Exogenous Information

Nicolas Gasnier, Student Member, IEEE, Loı̈c Denis, Roger Fjørtoft, Member, IEEE, Frédéric Liège and Florence
Tupin, Senior Member, IEEE

Abstract—Monitoring of rivers is of major scientific and
societal importance, due to the crucial resource they provide to
human activities and the threats caused by flood events. Rapid
revisit Synthetic Aperture Radar (SAR) sensors such as Sentinel-
1 or the future Surface Water and Ocean Topography (SWOT)
mission are indispensable tools to achieve all-weather monitoring
of water bodies at the global scale. Unfortunately, at the spatial
resolution of these sensors, the extraction of narrow rivers is
extremely difficult without resorting to exogenous knowledge.
This paper introduces an innovative river segmentation method
from SAR images using a priori databases such as the Global
River Widths from Landsat (GRWL). First, a recently proposed
linear structure detector is used to produce a map of likely line
structures. Then, a limited number of nodes along the prior river
centerline are extracted from the exogenous database, and used
to reconstruct the full river centerline from the detection map.
Finally, an innovative conditional random field approach is used
to delineate accurately the river extent around its centerline. The
proposed method is applied on various Sentinel-1 images and on
simulated SWOT images. Both visual and qualitative evaluations
show the efficiency of the proposed method.

Index Terms—conditional random field, graph cut, hydrology,
river extraction, segmentation, Synthetic Aperture Radar

I. INTRODUCTION

IN THE last five years, two major research works have pro-
vided comprehensive worldwide maps of continental water

surfaces: the Global Surface Water (GSW) masks of Pekel
et al. [1] and Global River Widths from Landsat (GRWL)
of Allen and Pavelsky [2]). They are based on multi-spectral
Landsat optical images over decades. Such optical satellite
sensors are not well suited for real-time monitoring of water
bodies, as they lack the all-weather capability of Synthetic
Aperture Radar (SAR) sensors such as Sentinel-1 that can
observe through clouds. The Ka-band Radar Interferometer
(KaRIn) of the future Surface Water and Ocean Topography
(SWOT) mission [3], scheduled for launch in 2022, is an
interferometric SAR system that has the capability to measure
water elevation as well. Thanks also to their short revisit
time, these freely available SAR data are expected to play a
crucial role in river monitoring in the coming years. However,
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SAR images have specific characteristics that make their direct
exploitation difficult. In addition to their limited number of
information channels (one for SWOT, two for Sentinel-1),
these images are corrupted by strong multiplicative speckle
noise and affected by artifacts that can make their exploitation
for water detection difficult. Robust and efficient methods to
detect narrow rivers in such images are therefore needed.

Most of the methods previously developed for river de-
tection do not use exogenous information, except for some
approaches using digital earth models to account for slope
in water detection both with SAR and optical images [4].
Multiple generic water detection algorithms, not specific to
rivers, have already been proposed for example by Liu and
Jezek [5] or Cazals et al. [6], which applies thresholding on a
filtered SAR image, or the baseline method for operational
water detection in SWOT images of Lobry et al. [7] that
uses Markov Random Fields (MRF). Other methods use active
contour approaches such as level sets [8]. These methods use
strong regularization priors to avoid speckle-induced false de-
tection, which impairs the detection of narrow rivers.Specific
approaches for river detection have also been proposed such as
the one developed by Cao et al. [9] for SWOT images. Valero
[10] proposes an approach based on mathematical morphology
for road detection in high-resolution images. This approach has
been adapted for rivers and automated using machine learning
by Klemenjak et al. [11]. Sghaier et al. [12] combines it with
structural feature sets.

The detection of narrow rivers in SAR images with a limited
false detection rate without using any exogenous information
is very difficult. Indeed, beyond usual issues associated with
speckle noise and low contrast, river detection is more difficult
because roads, terrain slope, and various artifacts can create
structures resembling rivers. To prevent false detection, prior
information about the location and the direction of known
rivers can be useful. It allows to distinguish linear structures
corresponding to a known river from other visually similar
linear features.

In this context, the aforementioned GRWL database pro-
vides, on a global scale, information that can be included
within new approaches for river detection from SAR images.
Before such global databases became available, the use of
exogenous information was difficult and often required manual
preparation of input and semi-automated approaches, such
as [13], [14] for optical images. Nonetheless, direct use
of the prior centerline of a river provided by the database
to detect and segment the river in a SAR image remains
problematic. The actual position shape of the river can change
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Fig. 1. Illustration of the displacement between the database centerline
projected in radar geometry (red dotted line) and the river observed in a
simulated SWOT image (where water is bright and land is dark). Such a
displacement can be caused by variations in water elevation or inaccuracies
in the digital elevation model used for projection: a few meters difference
between actual and prior elevation can lead to shifts of hundreds of meters
in ground range.

over time [15] and there can be errors in the database itself.
Discrepancies in position induced by variations in the water
level with respect to the prior knowledge of it can have a major
impact on the projected position in the range direction, in
particular for near-nadir sensors such as SWOT, as illustrated
by Figure 1.

The main contribution of this paper is to propose of a new
river detection approach for SAR images, guided by prior
information on the approximate river centerline. It can be
provided by a database such as GRWL that features several
information layers including the river centerline for most rivers
wider than 30 m, with a better completeness for rivers above
90 m. The robustness and efficiency of the proposed method
are illustrated by several examples for both Sentinel-1 and
SWOT data. The paper is organized as follows: The method is
presented in section II, the results are presented and discussed
in section III, and a conclusion and future work are detailed
in section IV.

II. PROPOSED FRAMEWORK

A. Overview

As mentioned in the introduction, our goal is to provide
a novel framework for river extraction in SAR images using
a database of rivers to overcome the limitations of detection
based only on a SAR image. The method needs to be robust to
differences between the observed river location and shape and

those in the database.To achieve this, we propose a three-step
framework summarized in Figure 2. The first step consists
in applying a line detector to the SAR image, as described
in the next section. Its response gives the likelihood of the
presence of a locally linear structure at each pixel of the image,
irrespective of the nature of the linear structure (river, road,
artifact, ...). The second step uses the Dijkstra algorithm [16]
to find the least-cost curvilinear path between two nodes of
the prior river database through a cost array derived from the
response of the linear structure detector. These first two steps
lead to an estimation of the actual river centerline in the image
that is robust to speckle noise and low water/land contrast,
and to inaccuracies in the shape and position of the prior
centerline projected in radar geometry.The third step consists
in segmenting the river reach around the extracted centerline
to accurately delineate the river extent (width). An innovative
conditional random field (CRF) approach is proposed for this
purpose.

B. Detection of linear structures in the SAR image
The first step of our approach computes a map that indicates

the likelihood of the presence of a linear structure at each
pixel of the image. In our context, a linear structure can be
defined as a set of contiguous pixels in a long and thin layout
(width of a few pixels) whose radar reflectivity (brightness) is
significantly different from that of the background [17]. The
relevant linear structures can be dark, as for most sensors such
as Sentinel-1 or RADARSAT, or bright for near-nadir sensors
such as KaRIn on the future SWOT satellite. The detection
of lines on SAR images can be very difficult because of the
strong, multiplicative speckle noise and the low contrast of
some rivers. Therefore, methods developed for optical images
[18]–[22] cannot be directly applied to SAR images, even
after log-transformation to make the speckle additive. Methods
specific to SAR images have been proposed in the past by
Hellwich et al. [23], who use both intensity and coherence
images, and by Tupin et al. [24] who combine the results
of two detectors: one based on ratios in a neighborhood, the
other based on cross-correlation. More recently, the authors
have developed a line detector that improved the detection
performance compared to [24] and has been described and
tested in [17].

As explained in [17], this detector is based on a generalized
likelihood ratio test (GLRT) and evaluates at each pixel k the
likelihood ratio between two hypotheses on a small square
patch I�(k) of size (2N + 1) × (2N + 1) centered on the
considered pixel k:
• H0: Absence of any linear structure (homogeneous area)
• H1: Presence of a linear structure
The GLRT at pixel k can be written:

GLRT(k) =
p(Ĩ(k)|H1, P̂ (k), θ̂(k))

p(Ĩ(k)|H0, R̂(k))
. (1)

Ĩ(k) is a vector obtained by concatenating the log-
transformed intensities of every pixels of the patch I�(k).

For both hypotheses, the likelihood depends on unknown
parameters that can be estimated by maximum likelihood.
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Fig. 2. Global overview of the proposed method: the first step consists in computing the linear structure detector response, used in the second step with the
nodes from the a priori database to retrieve the centerline. The river is then segmented around the centerline using a CRF approach in the third step.

Under the H0 hypothesis, the only parameter is the
homogeneous reflectivity R(k) over the patch I�(k), whose
estimator is R̂(k). Under the H1 hypothesis, there are two
parameters: the orientation of the line θ(k) and the estimated
profile P (k), which is a vector containing the intensities
along the direction perpendicular to the line. With our model,
this profile is symmetric and its extreme value is located in
its center (see Figure 3).

The GLRT presented in equation (1) can be simplified by
considering a Gaussian approximation of the log-transformed
speckle [25] which leads to a quadratic expression:

p(Ĩ|R̃µ) ' f(Ĩ) =
1

σ
√

2π
e
− 1

2

(
Ĩ−R̃µ
σ

)2

, (2)

where σ =
√
ψ(1, L), R̃µ = R̃ − log(L) + ψ(L), ψ is the

polygamma function (or digamma when used with a single
parameter), and L is the equivalent number of looks (ENL) of
the image.

This Gaussian simplification yields a closed form estimation
and permits fast computation. The approximation can be
considered fairly accurate for multilook images such as SWOT
High Rate (HR) coherent power (L=4) or Sentinel-1 Ground
Range Detected (GRD) High Definition data (L=4,4). Under
these hypotheses, the log-reflectivity of the patch under the
homogeneous hypothesis H0 can be estimated as the empirical
mean of the log-transformed intensities Ĩ(k) of the patch
I�(k).

In the following, 1 is a vector of ones with the same
dimension as I(k) (the number of pixels in a patch). Under

Fig. 3. General presentation of the linear structures detection performed on
the log transformed images. Example for a patch centered in k and for dark
linear structure detection.

H0, we use a uniform patch R̃µ(k)1 with the Gaussian
approximation. Under H1, the estimated patch r̂(θ̂(k), k) is
computed from the estimated orientation θ̂(k) and profile
P̂ (k, θ̂(k)) under H1. This way, we get a quadratic expression
for the log-transformed GLRT (3). The GLRT boils down to
the difference between the reconstruction errors E0(k) and
E1(k), as presented for one pixel k in Figure 3:

log(GLRT(k)) =
1

2
||Ĩ(k)− r̂(k)(θ̂)||2

− 1

2
||Ĩ(k)− R̃µ(k)1||2

log(GLRT(k)) = E0(k)− E1(k)

(3)

A more efficient way to compute this GLRT is also pre-
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Fig. 4. Simulated SWOT image and linear structure detector response,
combining the results for scales 1, 1/2 and 1/3. The response is displayed
with inverted gray scale for better visualization.

sented in [17] and used in our framework. It allows to compute
the GLRT value at all pixels using Fourier transforms. The
detection map can then be improved by combining different
scales, in a [Smin, Smax] range. This allows for the detection
of lines larger than a patch and avoids using large patches
that would be computationally expensive. An example of the
response of the linear structures detector, combining the results
for different scales is presented in Figure 4.

C. Accurate centerline determination using least cost path
algorithm

The second step of the algorithm is to retrieve the actual
centerline of the river reach using both the response of the
linear structures detector and prior information on the river
position. The external database that we use (GRWL) provides
for each river reach (about 10 km long) nodes that are 200 m
apart along the centerline. From this approximate centerline,
at least two approaches can be considered to obtain the actual
centerline:

• To apply an active contour approach such as snake [26]
on the entire centerline using the detector response

• To consider only some nodes in the centerline and to
compute the minimum cost path between pairs of nodes
on a cost image derived from the detector response.

A major issue with the snakes approach for this application
is its sensitivity to the initialization and to the parameters that
determine the evolution of the active contour. A preliminary
study showed the difficulty to choose the right parameters and
the lack of stability of the results. The proposed method is
based on a minimum path between a subset of nodes of the
centerlines using Dijkstra’s algorithm. A similar method has
been proposed by Dillabaugh et al. [14] for optical images,
with user-specified start and end points. We define the cost
C(x, y) at every pixel (x, y)based on the line detector response
D(x, y):

C(x, y) = [1−D(x, y)/Dmax]Npow (4)

with Dmax the maximum value of the detector response on
the whole image and Npow a tuning parameter. Npow adjusts
the cost of crossing a pixel whose detector response is not
maximal. It has to be high enough to penalize short paths that
cut through a meander but not too high either to prevent the
risk of being diverted by a road with a strong line detector
response or having numerical computational issues. In the
situation where one or both nodes are outside of the river, and
provided Npow is high enough, the least-cost path is expected
to go from one node to the other through the river via the
minimum cost path, as presented in blue between nodes B1
and B2 in figure 5.

In order to retrieve the whole centerline, we propose to use
overlapping pairs of nodes as extremities for the minimum
cost path search. Recall that GRWL has a node every 200
m, whereas the pairs of points that we use are in the order of
1 to 10 km apart. By combining the results for each pair of
nodes, we obtain the estimated centerline for the whole reach
plus one branch between the centerline and every a priori node
that does not belong to the centerline, as illustrated for three
pairs of nodes in figure 5.

The off-river branches can be easily eliminated using a
pruning method. Because of the overlap of the reach nodes,
only the pixels on the least-cost path between the end nodes
of a reach and the previous reach are kept in the final central
line. An example is presented in Figure 6. The centerline for
each river is then stored as a boolean raster CL of the same
size as the image that takes the value 1 on the centerline and
0 elsewhere.

D. Segmentation of the reach from the centerline by condi-
tional random field

The last step of the proposed method is to get an accurate
segmentation of the river reach using the previously estimated
centerline and the SAR image. This can be considered as a
region growing problem around the estimated centerline taking
into account the intensities in the SAR image. Random walk
[27] using the centerline as a seed, morphological approaches
or graph-cut approaches [28] with hard constraints could be
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Fig. 5. Visualization on the same image of the result of the least-cost paths
for 3 pairs of nodes: A1 −→ A2 in green, B1 −→ B2 in blue and C1 −→ C2
in magenta. The centerlines have been widened for better visualization. In
this example, the a priori nodes have been chosen excessively far from the
river to illustrate the robustness of the proposed approach.

Fig. 6. Centerline obtained after pruning of the previous result. The centerline
has been widened for better visualization.

relevant for this problem, but we did not obtain satisfactory
results with these.

Instead, we propose an innovative method based on a
conditional random field (CRF) [29]. The problem is expressed
as the minimization of a global energy function E that takes
both the SAR image and the centerline into account, with
an adapted regularization that does not over-penalize narrow
rivers.The global energy E , which depends on the classifica-
tion ` (` = 1 for water and ` = 0 for land) is the sum of two
data terms, a regularization term, and a flux term. The two data
terms are U Idata that ensures fidelity with the image intensity
I and UCdata that ensures that the centerlines retrieved in the
previous step are classified as water. The regularization term
Ureg is adapted to the segmentation of narrow rivers. Along
with this adapted term, we propose a term Uflux whose role is

to favor a longer water/land contour despite the regularization
Ureg if it better fits the gradients of the SAR image.

E (`, I) = U Idata(`, I) + UCdata(`, CL)

+ Ureg(`, I) + Uflux(`, I)
(5)

The image data term U Idata is based on a model that
considers two likelihoods: a likelihood that depends on the
intensity of the image for the water class and a likelihood
that is intensity-invariant for the land class. The likelihood for
the water class is based on a gamma distribution (6) for the
intensity, with two parameters: R1 for the homogeneous water
reflectivity and L for the number of looks. The reflectivity of
water R1 can be estimated using a debiased geometric mean
estimator R̂1 on the intensity I for every pixel belonging to
the centerline. In order to increase robustness, the brightest
pixels (for Sentinel 1) that can correspond to bridges or boats
can be excluded from the computation of the mean. With these
variables, the theoretical distribution of intensity for water is
given by:

p(I|R1) =
LLIL−1

Γ(L)RL1
exp

(
−L I

R1

)
(6)

The neg-log-likelihood L1 for the water class (` = 1) is
then given by (7):

L1(I|R1) = K(R1, L) +
LI

R1
+ (1− L). log(I) (7)

where K(R1, L) = log(Γ(L)) + L. log(R1)− L. log(L)
For the land class, in the absence of a model for the

distribution of the land class, we consider a uniform likelihood.
The constant likelihood value L0 is chosen so that the data
energy of one well-classified pixel (i.e. its neg-log-likelihood)
be equal in expectation for both classes:

L0 = K(R1, L) + L+ (L− 1)(log(
L

R1
)−Ψ(L)) . (8)

Provided that the estimator for water reflectivity R̂1 is
accurate enough, the homogeneous log-likelihood L0 =
EI|R1

[L1(I,R1)] (8), with the expected value computed over
the water pixels, prevents the classification from being biased
towards land.

In order to simplify L1 and L0, the constant value
K(R1, L) can be subtracted from both neg-log-likelihoods.

For an elementary surface of the image du centered at
u, the image data energy is defined by U Idata(du) = `(u) ·
L1(I,R1, L) · du+ (1− `(u)) ·L0 · du. Another energy term
UCdata ensures that the previously determined centerlines are
classified as water. It penalizes by a large value KC .du the
misclassification as land of any elementary surface du that
belongs to a centerline (CL(du) = 1). This energy term is
given by UCdata(du) = KC .(1− `(du)).CL(du).du.

Finally, a regularization term ensures that the transitions
between water and land are compatible with the gradients of
the image, by penalizing the transitions that would occur where
the gradient magnitude is low, or if the boundaries are not
orthogonal to the gradient direction.



SUBMITTED TO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 6

We want to minimize over the water boundaries the
weighted total variation defined in (9) on the label field `
that we assume to be continuous and whose spatial gradient
at location u is

−→
∇`(u)‖. The total variation is weighted with

a weight w(u) defined in (10).

Ureg(`) = β

∫
u∈R2

w(u)‖
−→
∇`(u)‖ · du (9)

with w(u) = exp(−[
−→
∇`(u) ·

−→
∇I(u)]+/λ). (10)

This weighting w favors localizations of the boundaries that
are aligned with the strong gradients of the image. The
notation [x]+ returns x if x > 0 and 0 otherwise. The variable
λ and β are parameters that allow adjusting the regularization
and its sensitivity to the gradients.

It can be noted that for sensors with dark rivers on a bright
background such as Sentinel-1 or TerraSAR-X, the negative
of the gradient −

−→
∇I(u) should be used instead to segment the

rivers.
To prevent transitions from being encouraged by gradient

artifacts caused by speckle noise, we use a gradient adapted
to SAR images called Gradient by Ratio (GR) proposed by
Dellinger et al. [30], which is an adaptation of ROEWA (Ratio
of Exponentially Weighted Average) proposed by Fjørtoft et al.
[31]. It computes at each pixel the gradients in the horizontal
and vertical direction, as presented in Figure 7.

The former regularization term Ureg can cause excessive
regularization especially in low contrast situations and lead to
false positives and false negatives in detection. For example in
SWOT images, a bright sand river inner bank in a meander,
also called a point bar (visible in Figure 8) can be erroneously
classified as water. Conversely, in the case of a river with
an irregular width, the regularization can lead to an incorrect
estimation of the width. To cope with these problems that
are caused by the regularization that favors shorter water-land
boundaries over longer ones despite the weaker gradient, we
introduce an additional term that favors longer boundaries co-
located with strong gradients.

The boundaries of the river are expected to be located where
the gradient of the SAR image is the strongest within a small
neighborhood and to be oriented orthogonally to the gradient.
Over the boundary ∂{` = 1} between land (` = 0) and water
(` = 1), this criterion locally corresponds to maximizing the
dot product between the gradient

−→
∇I(u) and the unit normal

vector of the segmentation {` = 1}. Over the whole river,
the criterion can be expressed as the outward flux Φ of the
gradient through the boundary ∂{` = 1}:

Φ =

∮
u∈∂{`=1}

−→
∇I(u).−→n (u).dl

=

∫∫
{`=1}

−→
∇ ·
−→
∇I(u) du ,

(11)

where the second line comes from Ostrogradsky’s divergence
theorem.

Here, the Laplacian of the image can be approximated with
a Laplacian of Gaussian (LoG) operator of parameter σL that
can be computed using a convolution.

Fig. 7. Gradient for the simulated SWOT image. The positive values are
displayed in green, the negative values are displayed in red. Above: horizontal
gradient, below: vertical gradient. The gradients have been computed with
the GR approach with a weighting parameter α = 2.4 which is a good
compromise between smoothing and location for L = 4.

−→
∇ ·
−→
∇I ≈ LoG(I, σL) (12)

The influence of the flux energy Uflux(`) can be balanced
with a multiplicative parameter η that adjusts its effect. The
sign of η depends on the sensor: η < 0 for SWOT (water
generally brighter than land) and η > 0 for Sentinel 1 (land
mostly brighter than water):

Uflux(`) =

∫
u∈R2,`(u)=1

η.LoG(I, σL)du. (13)

By combining the four terms: U Idata, UCdata, Ureg, Uflux of
E , we can write the segmentation problem as a minimization
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Fig. 8. Illustration of a situation in which using solely the total variation
regularization may lead to an erroneous contour detection.

problem:

arg min
`

∫
u∈R2,`(u)=1

L1(I,R1, L) + η.LoG(I, σL)du

+

∫
u∈R2,`(u)=0

L0 + CL(u).KCdu

+β

∫
u∈R2

w(u).‖
−→
∇`(u)‖.du.

(14)

This equation can be discretized:

arg min
l

∑
i

`(i).(L1(I,R1, L) + η.LoG(I, σ))

+(1− `(i)).(L0 + CL(i))

+β
∑
i∼j

w(i, j).|`(j)− `(i)|
(15)

with w(i, j) = exp(−[(`(j)− `(i)).(I(j)− I(i))]+/λ). i ∼ j
means that j is an 8-neighbor of i. In the case of pixels that
are 8-neighbors of i but not 4-neighbors, λ is multiplied by√

2.
The minimization problem presented in (15) can be solved

using a minimal cut approach such as the one proposed by
Boykov et al. [28], with asymmetric edges on a directed graph.

III. EXPERIMENTAL RESULTS

In this section we evaluate the interest and characterize the
performances of our method in segmenting small rivers in SAR
images using a prior database, both for SWOT and Sentinel-
1 images. Even if the images from the experimental dataset
have been chosen to be as representative as possible of various
situations, the comprehensive calibration of the algorithm on
a specific sensor is beyond the scope of our experiments.

The results presented below have been obtained using our
published code 1 that uses the PyMaxFlow 2 wrapper to
Vladimir Kolmogorov’s graph cut solver presented in [32].

1The code is not yet available for public distribution on our gitlab but
the reviewers can download it: https://www.dropbox.com/s/xzps72g6uj7zlmu/
RiverDetectionReviewersVersion.zip?dl=1

2http://pmneila.github.io/PyMaxflow/

Fig. 9. Result of the CRF segmentation for the same SAR image as in Figures
4 and 6 .

A. Dataset

Our method has been tested on Sentinel-1 GRD images and
on simulated SWOT HR images.

a) Sentinel-1: We used Sentinel-1 GRD images (more
specifically Interferometric Wide Ground Range Detected
High Definition images) in VV or VH polarization that have
been downloaded from a Copernicus Open-Access mirror and
cropped around the study area without orthorectification or
calibration.

These images have been multilooked by a factor of five in
the range direction from the Single Look Complex images and
have an ENL of about 4.4. Their spatial resolution is about
20.5m az × 22.m rg and each pixel corresponds to a 10m ×
10m square on the ground.

We use 7 images in our Sentinel-1 dataset, presented in
table I, corresponding to various examples of small rivers with
different kinds of environments.

These images are associated with a ground truth that has
been manually drawn on the SAR image using GIMP software,
with the help of Open Street Map and Bing aerial view data
displayed over the SAR images with QGIS software to help
to distinguish between actual rivers and other dark linear
structures. This ground truth is not binary but classifies the
pixels of the images into three classes: Land, Water, Uncertain
classification. The Uncertain class corresponds to pixels for
which it was not possible to determine whether or not it should
belong to the river. We used it for our ground truth in four
situations:

1) Isolated strong reflectors in rivers (most likely boats).
2) Bridges over rivers.
3) Small anabranches (diverging branches of a river, sepa-

rated by an island, that re-enter the main stream down-
stream.

4) Flooded areas or small lakes that are only partially
connected to a river.

https://www.dropbox.com/s/xzps72g6uj7zlmu/RiverDetectionReviewersVersion.zip?dl=1
https://www.dropbox.com/s/xzps72g6uj7zlmu/RiverDetectionReviewersVersion.zip?dl=1
http://pmneila.github.io/PyMaxflow/
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TABLE I
SENTINEL-1 GRD IMAGES USED FOR OUR EXPERIMENTS

Image #-name River name Location Date Polarization River width Size (pixels)
1 - Des Moines Racoon Des Moines, Iowa, USA 2018-08-02 VH 40m - 120m 1313×1750

2 - Sunar Sunar Garhakota, Madhya Pradesh,
India

2018-06-22 VH 40m - 150m 1026 × 923

3 - Gaoual Tomine
Koumba

Near Gaoual, Guinea 2018-07-15 VH 30m - 130m
30m - 130m

927×1854

4 - Angers Maine
Loire

Louet anabranch

Angers, Pays de la Loire,
France

2019-12-02 VV 100m - 150m
200m - 1000m

25m-120m

927×1854

5 - Garonne Garonne North of Toulouse, France 2020-02-09 VV 80m - 200m 1109×1704
6 - Redon Oust

Vilaine
Redon, Brittany France 2018-07-04 VH 15m - 60m

40m - 160m
618×773

7 - Régina Arataı̈
Approuague

Régina, French Guiana,
France

2017-10-11 VH 25m - 100m
100m - 150m

553×1216

All Sentinel-1 image extracts and associated ground truth
are made available in the same repository as our published
code.

b) SWOT: Concerning SWOT images, as the SWOT
satellite has not yet been launched, all test images have been
simulated with the Jet Propulsion Laboratory (JPL) HR science
simulator [33]. These images are associated with the water
mask that has been used for the simulation as ground truth.

We used three simulated images for our experiments. All
images have been simulated considering pessimistic assump-
tions about the performances of the sensor (worst case sce-
nario). The first image has been simulated from Lidar and
high-resolution landcover data on the Saline River, Lincoln
County, Kansas, USA, and presented in the previous part.
This image has been simulated with the so-called dark water
phenomenon. Dark water is water with a very low contrast
compared to land and is caused by very low water surface
roughness at low wind speed. This dark water phenomenon,
and numerous bright land structures, make river detection
especially difficult on this image. The two other images have
been simulated using Lidar data on the Rhône delta, France.
Unlike the Saline River image, these two images have been
simulated without dark water: the contrast between water
and land is more homogeneous. Image 9 corresponds to the
downstream Petit Rhône river, whereas image 10 corresponds
to the upstream Petit Rhone river with two small channels.

The SWOT images are summarized in Table II. The river
widths are here given in pixels and not in meters as the pixel
ground range spacing in SWOT depends on the position in the
swath.

B. Metrics

In order to quantitatively assess the performance of the
water detection compared to our ground truth, we use the
same six metrics as Lobry et al. [7]. These metrics are based
on the number of pixels considered as true positives (TP) for
adequately classified water, true negatives (TN) for adequately
classified land, false negatives (FN) for water classified as land

and false positives (FP) for land classified as water:

Recall =
TP

TP + FN

FPR =
FP

FP + TN

Precision =
TP

TP + FP

F-score = 2
Precision× Recall
Precision + Recall

ER =
FP + FN
TP + FN

MCC =
TP× TN− FP× FN√

(TP + FN)(FP + TN)(TP + FP)(TN + FN)

The recall is the proportion of actual water pixels that are
classified as water. The FPR is the proportion of land pixels
that are classified as water. The precision is the proportion
of actual water among all the pixels classified as water.
The F-score is the harmonic mean of precision and recall
and will be our main metrics. ER is the ratio between the
number of incorrectly classified pixels and the number of
actual water pixels. This metric is similar to the metric of
the SWOT mission science requirements [34], but computed
in radar geometry instead of ground geometry. The Matthews
correlation coefficient (MCC) [35] is another metric that takes
into account the over-representation of land in the context of
river detection.

C. Implementation
For each image, we extract the rivers using our method by

choosing a very limited number of prior centerline nodes, in
order to highlight the robustness of the proposed approach. For
single rivers (except for image 8, used as an example in the
previous part), we use only two nodes: one for each endpoint.
When two rivers are joining in a confluence, we locate one
node on the confluence and one node at each endpoint of the
two upstream rivers and of the downstream river. In the case
of an anabranch (e.g. in Angers image), a node is added in
the anabranch in order to prevent its centerline from going
through the main stream. The nodes that have been used are
plotted on the images.

We used the parameters presented in Table III. These
parameters have been chosen empirically by testing multiple
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TABLE II
SIMULATED SWOT IMAGES USED FOR OUR EXPERIMENTS

Image # - name River name Location Hypothesis on
sensor

performances

Simulated dark water River
width
(pixels)

Size (pixels)

8 - Saline Saline Lincoln County, Kansas,
USA

Worst Case Yes 2-5 301×351

9 - Petit Rhône
downstream

Petit Rhône Camargue France Worst Case No 3-14 700×800

10 - Petit Rhône
Upstream and

channels

Petit Rhône
Chanel Bas-Rhône Languedoc

Channel of Rhône in Sète

Camargue France Worst Case No 2-8 800×730

TABLE III
PARAMETERS USED FOR THE EXPERIMENTS

Line detection Centerline detection River segmentation
Patch size Scale Range Angular step Linear detector power Regularization Flux

N [Smin, Smax] θstep Npow β λ σL η
SWOT 9 [1,3] 3° 70 4 0.2 3 20

Sentinel-1 GRD 9 [1,4] 3° 10 4 0.2 3 20

values on the SWOT simulated image Saline. We manually
increased the maximum scale Smax of the detection of the
linear structures from 3 to 4 to account for the wider range of
river width in our use of Sentinel-1 images and decreased the
Npow parameter from 70 to 10 in order to be more robust to
dark roads.

The results could have been improved by fitting the param-
eters to the type of image (SWOT, Sentinel-1 VV, Sentinel-
1 VH) or even to the environment (urban area, rain-forest,
desert...), but our main goal for these experiments was to
show satisfactory performances without fine-tuning of the
parameters.

D. Results

Table IV gives the metrics for each image in our dataset. The
metrics are computed only for river detection (the detection of
surrounding lakes is considered to be a separate task, already
addressed by [7]). Three images are presented in detail below,
with their associated detection maps: image 1 (Des Moines)
is representative of the results obtained with our method for
typical Sentinel-1 images in urban areas, image 2 (Sunar)
to present an example where the centerline detection is not
successful, and image 9 (Petit Rhône Downstream) as an
example for SWOT images. All ten images of our dataset and
the corresponding segmentation results are presented in the
supplementary materials and for Sentinel-1 images the results
can be reproduced using our published code.

a) Example 1: Image 1 (Des Moines), displayed in Fig-
ure 10, shows that our method leads to a correct detection of
the whole river, despite using only two nodes as prior informa-
tion, and although the river is meandering. The centerline (b)
has been correctly classified with the proposed approach based
on the response of the linear feature detector. The segmentation
of the river from the centerline using our conditional random
field approach also gives good results in this example. The
river contour is relatively well respected. It can be noted that,
despite a reflectivity similar to the reflectivity of the river, the
lake (which is not connected to the river) and two large roads

(Figure 10 (a)) are not misclassified as river. Our approach
avoids two typical pitfalls of river detection on SAR images
that are lakes close to rivers and highways.

b) Example 2: Image 2 (Sunar) presented in Figure 11
illustrates a possible issue with the proposed approach when
using insufficient exogeneous information about the location
of the river. If a dark linear structure in a river meander
in a Sentinel-1 image creates a shorter path between two a
priori nodes of the centerline and if the actual river is not
identifiable, the detected centerline will be incorrect. This
leads to false positives on the dark linear structure and false
negatives in the part of the river that has been bypassed, such
as in Figure 12. The resulting classification is erroneous for
this part of the river. However, this does not significantly affect
the classification of the remainder of the river, as the estimation
of the parameters is robust enough.

A possible improvement would be to use more centerline
nodes as exogenous information and to use a post-processing
step to flag as uncertain the river parts where the reflectivity
is too high (possibly sand, mud or flooded vegetation) and
remove them if appropriate.

c) Example 3: Image 9 (Petit Rhone downstream), pre-
sented in Figure 13, illustrates the behavior of the proposed
method applied to simulated SWOT HR images. In this
example, the river centerline has been correctly detected and
the river segmentation is relatively accurate except for some
false positives caused by speckle noise, and a very small
connected channel that has not been detected. In comparison
with the baseline method [7] that only detects a small part of
the narrow river, the proposed approach shows an improved
detection. Because our approach does not detect other water
surfaces, but only rivers that would have been missed by the
generic method, both approaches are complementary.

It can be noted that for SWOT images, the bright area
corresponding to the river response might be slightly larger
than the river itself in the azimuth direction because water is
moving and does not necessarily remain coherent during the
entire SAR integration time. This issue could be addressed by
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Fig. 10. Image 1 (Des Moines): (a) SAR image with annotations, (b) centerline (in red) on the linear features detector and (c) final segmentation. A1 and
A2 mark the two nodes used as prior information. The color map of the line detector has been inverted and the centerline has been widened for better
visualization. In (c) the true positives are displayed in blue, the false positives in yellow and the false negatives in red. True negatives are displayed as the
actual SAR image pixels.

a morphological post-processing in order to erase such false
positive pixels and thereby improve the precision.

IV. CONCLUSION

In this article, an innovative river extraction method is
proposed and evaluated. The originality of our approach is that
it uses an exogenous river database in order to guide the river
detection. The proposed technique consists of three phases:
First, computing the response of a linear feature detector, then
detecting the centerline using the response and the prior river
nodes, and finally segmenting the river around the previously

detected centerline using a CRF approach. Experiments per-
formed on both Sentinel-1 and simulated SWOT HR images
have show that our method performs well including in low
contrast situations and for very narrow rivers of only a few
pixels.

The proposed method has been developed in the context
of the SWOT mission to process SWOT HR images that are
single-polarization and cannot easily be combined with images
from other sensors. This leads us to design a resilient method
for river segmentation in such images. While the proposed
method achieves good results in detecting river in single-
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Fig. 11. Image 2 (Sunar): (a) SAR image with annotations and (b) final segmentation. A1 and A2 mark the two nodes used as prior information. The close
up squared in red in both images show a meander in which the segmentation is unsuccessful as the centerline bypasses the meander. A1 and A2 mark the
two nodes used as prior information. In (b) the true positives are displayed in blue, the false positives in yellow and the false negatives in red. True negatives
are displayed as the actual SAR image pixels.

TABLE IV
SUMMARY OF THE METRICS FOR EACH RESULT

Number Name (sensor) Method Precision
(%)

Recall
(%)

FPR
(%)

F-Score
(%)

ER (%) MCC
(%)

Execution
time (s)

1 Des Moines (S1) Proposed 92.44 93.35 0.13 92.89 14.29 92.78 57.73s
2 Sunar (S1) Proposed 82.36 81.71 0.15 82.03 35.79 81.88 89.32s
3 Gaoual (S1) Proposed 92.51 89.09 0.12 90.77 18.12 90.64 212.96s
4 Angers (S1) Proposed 98.90 94.04 0.05 96.40 7.01 96.28 160.96s
5 Garonne (S1) Proposed 97.60 82.44 0.02 89.38 19.59 89.60 166.01s
6 Redon (S1) Proposed 90.71 92.34 0.14 91.52 17.12 91.40 47.48s
7 Régina (S1) Proposed 89.33 82.95 0.18 86.02 26.96 85.83 62.86s
8 Saline (SWOT) Proposed 63.24 94.45 1.02 75.76 60.45 76.81 10.45s

Baseline 5.30 87.58 33.87 10.00 1576.64 65.92 /
9 Petit Rhône Proposed 80.71 89.46 0.57 84.86 31.92 84.56 47.23s

downstream
(SWOT)

Baseline 91.00 9.80 0.03 17.69 91.17 9.66 /

10 Petit Rhône Proposed 73.07 87.45 0.58 79.62 44.78 79.55 57.17s
upstream and

channels
(SWOT)

Baseline 87.32 8.89 0.02 16.14 92.40 8.80 /

polarization (VV or VH) Sentinel 1 images, these results might
be further improved by using jointly the two polarizations
or even by merging information from optical images when
available. The two polarizations of Sentinel-1 images could
be combined by simply multiplying pixel-wise the VV and
VH amplitude images as it has been proposed by Nunziata et
al. [36] for coastal line segmentation, or as used in Ferrentino
et al. [37] for segmenting a lake. This would require a minor
adaptation of the last step of the proposed method (as the
product is not Gamma-distributed), but could improve the
discrimination between dark river banks and water.

The direct application of the proposed framework has an
obvious potential for monitoring rivers included in the GRWL
database, but it may also be adapted to the detection of rivers
unknown to the database. For example, if other hydrological

information or a digital elevation model (DEM) indicate that a
small tributary is missing from the database, our approach can
help to retrieve it by using two inputs: one node in the main
river and one node placed further up in the expected tributary.

Other interesting research tracks concern the adaptation
of the proposed approach to other applications than river
monitoring, for example, road extraction in SAR images.
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Fig. 13. Image 9 (Petit Rhône downstream): (a) SAR image with a priori nodes, (b) segmentation with the baseline MRF method and (c) proposed method
segmentation. A1 and A2 mark the two nodes used as prior information. In (b) and (c) the true positives are displayed in blue, the false positives in yellow,
and the false negatives in red. True negatives are displayed as the actual SAR image pixels.
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