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Phoneme Level Lyrics Alignment and
Text-Informed Singing Voice Separation

Kilian Schulze-Forster, Clement S. J. Doire, Gaël Richard, Roland Badeau

Abstract—The goal of singing voice separation is to recover the
vocals signal from music mixtures. State-of-the-art performance
is achieved by deep neural networks trained in a supervised
fashion. Since training data are scarce and music signals are ex-
tremely diverse, it remains challenging to achieve high separation
quality across various recording and mixing conditions as well
as music styles. In this paper, we investigate to which extent the
separation can be improved when lyrics transcripts are used as
additional information. To this end, we propose a joint approach
to phoneme level lyrics alignment and text-informed singing voice
separation. It is based on DTW-attention, a new monotonic
attention mechanism including a differentiable approximation
of dynamic time warping. Experimental results show that the
method can align phonemes with mixed singing voice with high
precision given accurate transcripts. It also achieves competitive
results on challenging word level alignment test sets using less
training data than state-of-the-art methods. Sequential alignment
and informed separation lead to improved separation quality ac-
cording to objective measures. Text information helps preserving
spectral phoneme properties in the separated voice signals.

Index Terms—Singing voice separation, lyrics alignment,
monotonic attention mechanism

I. INTRODUCTION

S INGING voice separation is the task of isolating the vocals
from the instrumental accompaniment in music record-

ings. It has user-oriented applications such as karaoke, remix-
ing, up-mixing, and also serves as a pre-processing step for
music information retrieval tasks such as singer identification
or lyrics transcription. State-of-the-art performance is achieved
by Deep Neural Networks (DNN) trained in a supervised
way [1]–[3] which requires a dataset of music mixtures along
with their corresponding isolated vocals stems. Obtaining such
audio data is difficult due to copyright restrictions. The biggest
publicly available dataset with somewhat realistic music mix-
tures is MUSDB [4] which consists of 150 (mainly western)
rock-pop songs. Audio data for other music genres are even
scarcer. Moreover, when the characteristics of mixtures at test
time deviate from those used during training (e.g. quieter voice
or noisy and reverberant live recordings) the performance

Manuscript received August 27, 2020; revised January 14, 2021 and May
3, 2021; accepted XXXXX XX, 2021. Date of publication XXXXX XX,
2020; date of current version XXXXX XX, 2020. This project has received
funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowsa-Curie grant agreement No. 765068.
The associate editor coordinating the review of this manuscript and approving
it for publication was XXXXX. (Corresponding author: Kilian Schulze-
Forster.)
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of DNN-based methods decreases [5]. The question arises
whether separation quality can be improved without access
to more audio data. In this context, we investigate the use
of lyrics transcripts to inform deep learning based singing
voice separation. Words can be decomposed into phonemes,
the smallest sound units of a language, which have distinct
spectral characteristics [6]. They contain information about the
sounds produced by a singer, e.g. voiced/unvoiced, phonetic
class, and order of appearance.

We assume that phonemes need to be aligned with the ob-
served mixture in order to inform the separation process. While
great progress has been made regarding lyrics alignment at
word level using resource intensive methods [7], [8], phoneme
level alignment is rarely addressed although the methods
in [7], [8] could be adapted to it. In fact, when phoneme
alignment is required, they are often aligned manually [9], [10]
or tools such as [11] are used [8], [12], [13] which employ
acoustic models based on Gaussian Mixture Model - Hidden
Markov Models (GMM-HMM) and do not work well on mixed
singing voice as will be shown in Section V-B1.

Instead of adapting existing alignment methods, we intro-
duce a new approach to lyrics alignment in this paper. The
alignment is learned jointly with the informed separation. To
this end, the source separation model Open Unmix [1] is
extended so that it can process a phoneme sequence and a
mixture as inputs. Driven solely by a separation objective, it
learns to align text and audio with a new monotonic attention
mechanism in order to derive a combined representation from
which the voice spectrogram can be estimated. The idea
is based on our previous findings [14], [15]. In [14] non-
aligned voice activity information is exploited for singing
voice separation and in [15] it is shown that phonemes can
be aligned with corrupted speech signals via conventional
attention [16] when a model is trained for text-informed
speech-music separation [15]. However, the method in [15]
does not work on singing voice mixtures without an important
modification which we propose in this paper: the integration of
Dynamic Time Warping (DTW) in the attention mechanism,
which allows to exploit the left-to-right nature of text and
audio sequences in order to obtain monotonic alignments.
Competitive lyrics alignment performance is achieved with this
joint approach although much less training data are used than
for state-of-the-art methods [7], [8]. However, the separation
performance does not improve compared to non-informed
methods. Therefore, we also investigate a sequential approach
where the phonemes are first aligned with our method and
then fed as side information to a dedicated separation model.
This leads to improvements through the text-information.
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In summary, the contributions of this work are:
• a novel approach to lyrics alignment at phoneme level

and lyrics-informed singing voice separation
• DTW-attention: a new monotonic attention mechanism

including a differentiable approximation of DTW
• extension of the MUSDB dataset with lyrics transcripts

and other annotations
• extensive experimental evaluation of the proposed method

on lyrics alignment and informed singing voice separation
The paper is structured as follows. In Section II we re-

view related work on lyrics alignment, monotonic attention,
and text-informed source separation; the proposed method is
explained in Section III. Data annotations and training details
are presented in Section IV. The lyrics alignment evaluation is
detailed in Section V, the singing voice separation evaluation
is detailed in Section VI. The work is concluded in Section
VII.

II. RELATED WORK

In this section, related work on lyrics alignment, monotonic
attention, and informed source separation is reviewed.

A. Lyrics alignment

Most approaches to automatic lyrics alignment are based on
acoustic models that estimate text unit (e.g. phoneme, charac-
ter) probabilities given acoustic input features. When no large
dataset of music recordings with corresponding lyrics was
available, some acoustic models have been trained on speech
and then adapted to singing voice [13], [17], but with limited
success. Some works proposed to take additional information
next to acoustic features into account such as chord labels
[18] or phoneme durations inferred from a musical score [19].
These methods achieved good performance when aligning
lyrics at phrase level on mixtures.

Recently, deep learning based approaches have exploited
larger data resources for acoustic modeling on singing voice
[7], [8]. They achieved high accuracy for word level alignment
with mean absolute alignment errors below one second on
mixed singing voice. The method of Stoller et al. [7] learns
an acoustic model on time domain signals to estimate character
probabilities over audio frames. It is trained on 39,232 songs
with line level aligned lyrics using the Connectionist Temporal
Classification (CTC) loss [20]. The data intensive nature
can be explained by the end-to-end approach and the fact
that character sequences are ambiguous regarding the word
pronunciation.

Gupta et al. [8] proposed to learn three genre-specific
acoustic models for the broad classes pop, hip hop, and metal
on mixtures. Genre-specific models for non-vocal segments are
learned to improve the performance on long instrumental parts.
It requires a training corpus with genre labels and enough data
per genre class to train all acoustic models. In total, 3913 songs
are used for training. Acoustic modeling and alignment are
done using the open source speech recognition toolkit Kaldi
[21] with a duration-based pronunciation lexicon for singing
voice [22]. The performance seems to rely on a very large

beam width during Viterbi decoding [23] as mentioned in the
previous work [24] which is computationally expensive.

Instead of adapting the data intensive methods [7], [8] for
phoneme alignment, we propose a novel alignment approach.
The proposed model is actually trained for informed source
separation and learns the acoustic model without direct super-
vision as a side effect. It has the potential to reduce the amount
of required training data compared to [7], [8] because the task
it solves during training is simpler. It has to match the observed
phoneme sequence with the observed audio frames, whereas
the other models need to classify observed audio frames into
phonemes. Multitrack data are required for training of the
proposed method.

The Montreal Forced Aligner (MFA) [11] is a tool that can
be used to learn GMM-HMM acoustic models and to align
phonemes with audio signals. As initial alignment it assumes
that all given phonemes belonging to a short audio example
have the same length. On such an alignment a monophone
GMM-HMM is trained while iteratively re-estimating the
alignment. Then, triphone models are trained iteratively start-
ing from the alignment provided by the monophone model.
Speaker adaptation is performed as a last step if the speaker
identities are known. The implementation is based on Kaldi
[21]. Such a tool is commonly used to align phonemes with
singing voice to prepare training data for other tasks [8],
[12], [13]. Therefore, it will serve as one of the baselines for
phoneme alignment.

B. Monotonic attention

The attention mechanism has been introduced by Bah-
danau et al. [16] for neural machine translation with recur-
rent encoder-decoder models. It enables sequence-to-sequence
models to evaluate the relevance of each element in one
sequence with respect to the elements of another sequence by
means of a learned scoring scheme. The scores can be viewed
as alignment information for the two sequences. Attention has
been shown to be useful in a wide range of tasks and model
architectures [25]. In some cases, the alignment is known
to be monotonic. Modifications to the attention mechanism
have been proposed in the context of speech recognition [26]–
[28] and machine translation [27]–[29] in order to enforce
monotonic alignments which can help to disambiguate re-
peated elements in the sequences. We refer to such modified
mechanisms as monotonic attention. One important difference
between existing monotonic attention models and our model
is that they consist of only one encoder and one decoder
and the attention mechanism aligns the encoder output with
hidden states of the decoder. The hidden states are computed
autoregressively and cannot be observed all at once whereas
we can observe both sequences to be aligned entirely because
they are both inputs to the proposed model.

Chorowski et al. [26] proposed to consider the attention
weights for the previous decoder time step in the scoring
function for the current time step. This enables the model to
learn a monotonic alignment but does not enforce monotonic-
ity explicitly. Luong et al. [29] and Tjandra et al. [28] use a
sliding window over the encoder output sequences and only

This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2021.3091817

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



SCHULZE-FORSTER et al.: PHONEME LEVEL LYRICS ALIGNMENT AND TEXT-INFORMED SINGING VOICE SEPARATION 3

compute attention weights for elements within this window.
They explore both shifting the window monotonically from
left to right over the encoder output and learning to predict
the window position for each decoder step.

Raffel et al. [27] proposed a monotonic attention mechanism
for online scenarios where the input to the encoder is observed
step-by-step. They define a stochastic process modeling the
dependency of the matching decision on previous time steps. It
provides a hard alignment at test time and the model is trained
using soft alignments which reflect the expected outcome of
this process.

The sliding window approach and the stochastic process in
[27] make the alignment decision at a certain time step depen-
dent on decisions at previous steps. An incorrect matching at
some time step can therefore lead to many incorrect matches
at subsequent steps. Our approach relaxes the dependence of
attention weights across time steps during training. At test
time, DTW finds a globally optimal alignment which considers
all elements of both sequences. Moreover, in autoregressive
models the computation of attention weights cannot be paral-
lelized for the decoder time steps. DTW-attention allows for
more parallel computations.

Another difference to the typical single encoder-decoder
attention mechanism is that in our model the information
coming from the text is not essential (but potentially useful) in
order to minimize the loss function, i.e. to learn the separation.
Since the alignment is learned driven only by the separation
objective, we observed that too strong constraints on the
attention mechanism result in vanishing gradients for the text
encoder and the attention mechanism so that no alignment is
learned, while the separation is still learned. Therefore, the
approaches proposed in [27] and [28] do not work in the
context of this work. The proposed DTW-attention mechanism
is able to learn the alignment while incorporating monotonicity
constraints.

Cuturi et al. [30] proposed soft DTW which enables com-
puting the DTW distance between two sequences with differ-
ent lengths in a way that is differentiable and well-suited for
gradient-based optimization. It allows using the DTW distance
as a loss function but recovering the optimal alignment path
is not possible. Therefore, soft DTW is not applicable in
the context of this work and we propose DTW-attention to
approximate the DTW alignment path in a differentiable way.

C. Informed audio source separation using deep learning

Prior knowledge has usually been used in source separation
with Non-negative Matrix Factorization (NMF) in order to
constrain the spectral templates and their temporal activations.
The prior knowledge concerned either source characteristics
(e.g. harmonic, continuous) or it was provided in the form of
additional data related to the source signals, for example as
musical scores [31].

DNNs have a larger capacity than NMF and achieve very
good separation results without any extra information [1], [3].
However, recently there has been an interest in including side
information such as pitch [32], [33] or phonetic content [34]–
[37] in deep learning based separation in order to make it

more robust in challenging scenarios. It has also been proposed
to learn auxiliary tasks jointly, e.g. instrument activation
detection [38] in order to cope with a larger number of musical
sources to be separated. Most related to our work are four
approaches that consider phonetic and linguistic information
for singing voice separation.

Takahashi et al. [34] use deep features from an End-to-
End Automatic Speech Recognition (E2EASR) model as side
information for voice separation. The assumption is that the
features contain phonetic and linguistic information because
E2EASR combines acoustic and language modelling within
one model. The side information leads to big improvements on
speech separation in challenging conditions. The improvement
for singing voice separation is considerably smaller. A possible
reason is that the E2EASR model is trained on speech data
and not adapted to singing voice.

Chandna et al. [35] train an encoder to extract content
embeddings from mixtures. The target content embeddings
are obtained with a speaker conversion method and contain
phonetic information. From the embedding, a decoder es-
timates vocoder features which, along with a fundamental
frequency estimate, are used to re-synthesise the voice signal
from a mixture. The results show that the intelligibility of
synthesized vocals is improved through phonetic features, but
the overall subjective audio quality is lower than for filtering
based separation methods.

An advantage of the approaches in [34], [35] is that no
alignment method is required because phonetic information
is extracted directly from the mixtures. On the other hand,
the phonetic information is rather implicit and the mixture
remains the only source of information. We consider explicit
phoneme sequences from lyrics transcripts as additional model
input that is independent from the mixture. Two approaches to
lyrics-informed singing voice separation have been developed
in parallel to our work.

Meseguer-Brocal et al. [36] use lyrics transcripts aligned
at word level to condition singing voice separation with
the U-Net [39]. Words are represented as bag of phonemes
(without any temporal information at phoneme level) from
which parameters are estimated to transform deep features
in the U-Net encoder. Improvements over the classic U-Net
are reported. However, it is not clear whether they are caused
by the higher number of parameters in the conditioned U-
Net, the voice activity information inherent in aligned text, or
by the phonetic information. Since only word level alignment
is available, the phonetic information of the text cannot be
exploited entirely. Jeon et al. [37] condition singing voice sep-
aration on lyrics manually aligned at syllable level. They use
a deep text encoder consisting of 1-D-convolutional highway
layers [40]. The approach is evaluated on a private dataset of
Korean amateur solo singing recordings mixed with unrelated
accompaniments. To our understanding, only one singer sings
at a time (no background singers, no multi-pitch singing).
This facilitates learning the relation between phonemes and
audio during training and the usage of text-information at
test time. However, real commercial music recordings often
contain multiple voices making the use of lyrics for separation
less straightforward.
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Fig. 1. Overview of the proposed model. a) With the joint approach, alignment and separation are learned by optimizing the separation objective. b) At
lyrics alignment test time the phoneme onsets can be obtained from the score matrix via DTW. c) In the sequential approach, alignments are not learned but
provided by some alignment method, e.g. the joint approach model.

In contrast to [36] and [37], we address the lyrics alignment
problem which allows us to use lyrics aligned at phoneme
level. Furthermore, we provide extensive experimental eval-
uation using publicly available realistic mixtures with mul-
tiple singers and correlated accompaniments. We conduct a
thorough analysis of the separation performance regarding
the number of simultaneously present singers and phonemes
and regarding the Signal-to-Noise Ratio (SNR) of the voice-
accompaniment mixtures.

III. METHOD

Notation: we denote scalars by italic lower and upper case
characters (x,X), column vectors by boldface lower case
characters (x), and matrices by boldface upper case characters
(X). Matrix elements are denoted by scalars with two indices
indexing the rows and columns respectively (xa,b). A matrix
may be treated as a sequence of column vectors. In this case,
the vectors are indexed by the column number (xn).

Let x(t) = v(t) + a(t) be a time-domain single-channel
mixture signal of singing voice v(t) and instrumental accom-
paniment a(t) where t refers to the discrete time index. Let
y ∈ {0, 1}I be a one-hot vector representing one out of I con-
sidered phonemes and let Y = [y1, ...,yM ] ∈ {0, 1}I×M be
a matrix treated as a sequence of M one-hot vectors indexed
by m representing the phonemes pronounced by the singing
voice in the mixture.

The goal of text-informed singing voice separation is to
separate x(t) into v(t) and a(t) given x(t) and Y as inputs.
The goal of lyrics alignment is to estimate the onset time of
each phoneme represented in Y.

For this study, we propose a model that can perform lyrics
alignment and singing voice separation jointly as well as
sequentially. As shown in Figure 1, it consists of four parts: A
text encoder and an audio encoder which are detailed in section
III-A, an alignment system with a new monotonic attention
mechanism explained in Section III-B, and Open Unmix [1]

as a separation model described in Section III-C. A PyTorch
implementation is available online1.

A. The encoders

The text encoder is a single Bidirectional Long Short-Term
Memory (BLSTM) layer [41], [42]. It transforms Y into the
hidden phoneme representation H = [h1, ...,hM ] ∈ RR×M

where R is the number of hidden features.
In the audio encoder, the Short Time Fourier Transform

(STFT) of the mixture signal x(t) is computed and we denote
its magnitude X ∈ RF×N

≥0 where F is the number of frequency
components and N is the number of time frames which
are indexed by n = 1, ..., N . Each time frequency bin is
scaled and shifted by learnable scalars which are initialized
by the standard deviation and mean over the training data,
respectively, as in the Open Unmix model [1]. The audio
encoder transforms the input with a fully connected layer with
tanh activation followed by two BLSTM layers into the audio
representation G = [g1, ...,gN ] ∈ RS×N where S is the
number of hidden features.

B. The alignment system

The alignment system learns to align the vector sequences
H and G. An alignment can be formalized as a path de-
noted as sequence P = (p1, ...,pL) of length L with
pl = (ml, nl) ∈ [1 : M ] × [1 : N ] that satisfies the
following conditions [43]:

p1 = (1, 1) and pL = (M,N) (1)

pl+1 − pl ∈ {(0, 1), (1, 1)}. (2)

Each path tuple pl matches one phoneme with one audio
frame. The step size condition in (2) is chosen so that each
audio frame is matched with exactly one phoneme, whereas
the same phoneme can be assigned to several audio frames.
It follows that L = N . The condition also implies that the

1https://github.com/schufo/plla-tisvs
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alignment path is monotonic and continuous, i.e. we assume
that the phonemes are pronounced in the given order and no
phoneme is skipped. The goal is to find the path that provides
the correct matching between audio and text.

When phonemes are to be aligned with speech, a stan-
dard attention mechanism can learn such a monotonic align-
ment [15]. However, when working on singing voice, we found
it to be crucial to enforce monotonicity explicitly in order to
learn an alignment. This is probably due to the wider range of
possible acoustic realisations of phonemes in singing due to
a wider pitch range and artistic expressiveness. Therefore, we
propose DTW-attention, a combination of DTW and attention
to obtain monotonic alignments.

First, we compute a pair-wise matching score sm,n between
all elements of the sequences G and H as

sm,n = g>nWhm (3)

with the learned weight matrix W ∈ RS×R as typically done
in attention mechanisms [29]. It evaluates how likely it is that
the m-th phoneme is pronounced in the n-th audio frame
regardless of the position of gn and hm in their respective
sequence.

Then, we incorporate the conditions (1) and (2) by comput-
ing the accumulated score matrix D = [dm,n]m,n ∈ RM×N

as typically done in DTW as follows [43], [44]:

dm,n = sm,n +max(dm,n−1, dm−1,n−1) (4)

with

d0,0 = b and d0,n = dm,0 = −∞ ∀m,n > 0 (5)

where b is a sufficiently large number. Note that in (4) the ob-
jective is to maximize the accumulated score, whereas classical
DTW usually minimizes a distance [44]. The reason for this is
that stronger similarity between a phoneme and an audio frame
results in a higher score sm,n while it would produce a lower
distance value. The value dm,n is the accumulated score of the
optimal alignment path starting at (1, 1) and ending in (m,n)
respecting the step size condition (2). The optimal path in the
DTW sense is the one with the highest accumulated score.
The DTW step in (4) helps disambiguate identical phonemes
appearing several times in the sequence, which could have
the same score at a given time frame, by explicitly taking
their order into account. It can be implemented efficiently by
parallelizing computations of entries on the anti-diagonal of D
or those lying on a line parallel to it because they are mutually
independent.

Using classical DTW the actual optimal path could now
be found by path backtracking [43]. However, such hard
alignment, where one audio frame is matched with exactly
one phoneme, is not differentiable [27], [30] and thus not
applicable in a deep learning model during training. Instead,
we will use a soft alignment strategy during training which we
explain in III-B1. When phoneme onsets are to be retrieved
at test time, we are able to compute P using the scores sm,n

and classical DTW as detailed in III-B2.

1) Training: We compute attention weights α by a column-
wise softmax operation on D as typically done in attention
mechanisms [16]:

αm,n =
edm,n∑M
k=1 e

dk,n

. (6)

The M attention weights corresponding to audio frame n can
be interpreted as a probability distribution over all phonemes
for this time frame and hence provide a soft alignment. The
phoneme with the highest accumulated score in frame n has
the highest probability α. This is a local approximation of
the globally optimal path that would be obtained by DTW. It
assumes that the phoneme with the highest accumulated score
at frame n will be part of the optimal path. As we explain
in Section VI-B1, this is true for 84% of the frames on our
test set. Equations (4) and (6) put a soft constraint on the
attention weights to be monotonic, i.e. respecting (2). It is soft
because the dependence between time frames is reflected only
in (4) whereas the attention weights are computed for each
frame independently in (6). This is in contrast to other methods
for monotonic attention, which we reviewed in Section II-B,
and avoids error propagation from previous frames at the cost
that there is no guarantee for strict monotonic paths during
training. We found this trade-off to be appropriate in order
for the model to learn the correspondence between phonemes
and spectrogram frames of (mixed) singing voice. It also
allows for efficient parallel computation of attention weights.
The attention mechanism does not require training data with
aligned phonemes. However, if such data were available they
could be exploited trough a supervised loss term on the scores
or attention weights.

The text information corresponding to an audio frame is
then computed as

cn =

M∑
m=1

hmαm,n (7)

and a new text sequence C = [c1, ..., cN ] ∈ RR×N which
has the same length N as the audio sequence G is obtained.
Finally, C and G are concatenated along the feature dimen-
sion and this combined text and audio representation is then
processed further by the separation model as explained in
Section III-C.

2) Hard alignment at test time: Once the model is trained,
the scores sm,n can be used as a similarity measure between
a given phoneme sequence and the spectrogram frames. A
globally optimal alignment P∗ can then be found by DTW
which consists of (4) and path backtracking [43]. The path
P∗ is a hard alignment as it assigns exactly one phoneme to
each audio frame. While a hard alignment is required to infer
phoneme onsets at test time, the soft alignment provided by
(4) and (7) can be used to inform the separation model at test
time in order to have the same behaviour as during training.
The estimated phoneme onset is the start time of the first frame
it has been assigned to. An example of the scores and a DTW
path is shown in Figure 2.
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8

Fig. 2. Example of a score matrix S = [sm,n]m,n with optimal DTW path
in red which assigns one phoneme to each audio frame.

C. The separation model

This part consists of the source separation model Open
Unmix [1]. The input is the combined text and audio repre-
sentation (cf. III-B1) from which the estimate V̂ ∈ RF×N

≥0 of
the singing voice’s magnitude spectrogram is computed. The
model comprises a fully connected layer with tanh activation,
three layers of BLSTM with a skip connection, and two
fully connected layers with ReLU activation. The output is
multiplied with the mixture magnitude spectrogram X and
yields V̂. More details about the architecture are presented
in Figure 1. In order to obtain the vocals estimate in the time
domain, V̂ is combined with the mixture phase and an inverse
STFT is applied. In this study, we do not consider additional
models to estimate the other sources because the focus is on
the effect of text-information for the vocals estimate.

By thresholding
∑F

f=1 v̂f,n for each time frame n, the
estimate can be used as a Voice Activity Detector (VAD) to
find frames which are likely to contain no vocal sounds. At test
time, the scores of space tokens that represent silence between
words (cf. Section IV-B) can be set to a high value for such
frames before applying DTW. This reduces the probability that
phonemes are assigned to frames without vocals which can
happen especially on long instrumental parts.

D. Joint vs. sequential approach

The model described above performs separation and align-
ment jointly. However, it can be beneficial for the separation
quality to perform these tasks sequentially. For a sequential
approach, two different, specialized versions of the model
are employed. The first one (alignment model) corresponds
exactly to the model described above. It is responsible for the
alignment, which is learned through the separation objective
as described. It is trained first and provides the hard alignment
paths P∗ for the second version (separation model) which is
responsible for the separation and does not have an alignment
system. We denote representations in the separation model
with a tilde˜ . The aligned text representation C̃ is obtained
by assigning an element of H̃ to each audio frame using
P∗ (cf. Figure 1 and 2). During training and testing of the
separation model, the text and audio sequences are fed to
both the encoders of the alignment model and the encoders
of the separation model (cf. Figure 1). The encoders of
the separation model can learn representations H̃ and G̃
dedicated exclusively to the separation task. In contrast, the

representations in the alignment model and the model for a
joint approach have to enable the alignment as well.

IV. DATA ANNOTATION AND TRAINING DETAILS

In order to obtain training and testing data for text-informed
singing voice separation, we annotated the most popular
singing voice separation dataset, MUSDB [4], with line level
aligned lyrics and additional information about the vocals
stems as explained in Section IV-A. We detail the training data
and procedure in Section IV-B and a study on pre-training and
attention is presented in Section IV-C.

A. Annotations of the MUSDB corpus

The dataset comprises 150 songs and is split into a training
partition with 100 songs, of which 96 have English lyrics, and
a test partition with 50 songs, of which 45 have English lyrics.
We transcribed the English lyrics manually by listening to the
vocals stems.

The songs were divided into sections of lengths between
3 and 12 seconds. The priority when choosing the section
boundaries was that they correspond to natural pauses and do
not cut vocal sounds. Most of the sections do not overlap, some
have an overlap of 1 second. For each section, we annotated
the start and end times, the corresponding lyrics as well as a
label indicating one of the following four properties:
(a) only one person is singing
(b) several singers are pronouncing the same phonemes at the

same time (possibly singing different notes)
(c) several singers are pronouncing different phonemes simul-

taneously (possibly singing different notes)
(d) no singing

Differentiating between singing voice examples with these
properties allows for a more thorough analysis of the sepa-
ration results and one could exclude certain segments from
the training set, if desired. Segments that are labelled with
the property (b) or (c) do not necessarily have this property
over the whole segment duration. As soon as somewhere in a
segment several singers are present, label (b) was assigned; as
soon as they sung different phonemes somewhere at the same
time, label (c) was assigned. Property (a) and (d) are valid
for the entire segment. Furthermore, segments with property
(c) can contain either some (lead) singer(s) singing some
words in the presence of background singers singing long
vowels such as ’ah’ or ’oh’ or they can contain multiple
singers who sing different words at the same time. In the
latter case, it was very difficult to understand the lyrics and
to decide in which order to transcribe words or phrases
sung simultaneously. We marked these segments and excluded
them from our training and test data. In some difficult cases,
e.g. shouting in metal songs or mumbled words, where the
words are barely intelligible, we made an effort to make the
transcriptions as accurate as possible phonetically and did not
prioritize semantically meaningful phrases.

We believe that these annotations are a valuable resource for
research on several tasks such as automatic lyrics alignment
and transcription, text-informed singing voice separation, and

This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2021.3091817

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



SCHULZE-FORSTER et al.: PHONEME LEVEL LYRICS ALIGNMENT AND TEXT-INFORMED SINGING VOICE SEPARATION 7

singing voice analysis. Therefore, we make them publicly
available2.

B. Training details

We use 82 songs (2289 segments with total length of 4.6
hours) of the annotated MUSDB training set for training. The
remaining 14 songs are used as a validation set (487 segments
with 0.94 hours total length) for early stopping. The audio
signals were downsampled to 16 kHz. As for the original Open
Unmix model [1], training is done on short segments to prevent
learning difficulties with backpropagation through time [45].
This does not prevent the model to process longer sequences at
test time. Preliminary experiments (cf. Section IV-C) showed
that the attention mechanism requires pre-training with mix-
tures containing speech signals. We found that pre-training
on speech-music mixtures for 66 epochs enables subsequent
training on singing voice plus accompaniment mixtures. We
use speech recordings sampled at 16 kHz and word level text
transcripts from the TIMIT database [46]. The speech is mixed
with instrumental music retrieved from Youtube with a SNR
uniformly drawn from [−8, 0] dB. In total, the set consists of
4320 mixtures, which are between 2 and 8 seconds long and
have a total length of 4.9 hours.

All words in the transcripts are translated into phonemes
using the CMU LOGIOS Lexicon Tool3. Hence, there is no
guarantee that the phonetic transcription always reflects the
actual word pronunciation in the recordings accurately. We
add a space token between each word that represents potential
silence in the vocals. Examples without vocals are annotated
with only the space token as lyrics.

The model is trained with the objective to minimize the
L1 distance between the estimated and true vocals magni-
tude spectrogram, V̂ and V respectively. The ADAM opti-
mizer [47], a learning rate of 0.001 and a batch size of 16 are
used. A STFT with a Hann window of length 512 samples
(32 ms) and a hop size of 256 samples (16 ms) is applied to
compute the spectrograms. The learning rate is multiplied by
0.3 after 80 consecutive epochs without improvement of the
validation loss and training is stopped after 140 consecutive
epochs without improvement. Following the Open Unmix
procedure, additive mixtures are produced for training by
sampling the stems bass, drums, and others (as defined by
MUSDB) randomly from different tracks, scaling them by a
factor randomly drawn from [0.25, 1.25] and adding them to
a vocals segment scaled by a factor drawn from [0.25, 0.9].

C. Study on pre-training and attention

In order to illustrate the effect of pre-training on speech-
music mixtures, we train the proposed model with and without
pre-training. To test the effectiveness of the proposed attention
mechanism, we also train the model with a conventional
attention mechanism [29] (applying the softmax operation in
(6) on the scores S = [sm,n]m,n instead of the accumulated
scores D) for comparison. The resulting attention weights
matrices for the four studied scenarios are shown in Figure 3.

2https://doi.org/10.5281/zenodo.3989267
3http://www.speech.cs.cmu.edu/tools/lextool.html

without	pre-training with	pre-training
conventional	attention

D
TW

-attention	(proposed)

Fig. 3. Attention weight matrices A = [αm,n]m,n for four different
scenarios. Darker colors represent higher values, all values are in [0, 1].

Without pre-training on speech, none of the attention mech-
anisms learns an alignment for singing voice. With pre-
training, both attention mechanisms learn some correspon-
dence between audio and text, but only the proposed mech-
anism provides a sharp and nearly monotonic alignment. We
can look at the differences between the speech and singing
voice data used for training in order to understand why
the attention mechanism initially requires speech data. The
speech-music mixtures have more accurate text transcripts, a
lower SNR (making the task more difficult and thus the side
information more valuable), a lower voice pitch range, and
more phonemes are uttered in a given time interval compared
to singing voice. Also, word pronunciations are altered in
singing voice for artistic reasons. We conducted various addi-
tional experiments with lower SNRs in the training examples
using both the MUSDB data and singing voice recordings with
accurate phoneme transcriptions [9]. In none of the settings did
the attention mechanism train as desired. Therefore, the pitch
range, phoneme rate, and uniform pronunciation in speech
are likely to be the factors that enable the proper training in
the considered limited data setting. A possible reason for the
sensitivity to initialization is that the separation task can be
learned by the model even without learning the alignment as
discussed in the end of Section II-B.

The advantage of computing the attention weights for each
audio frame independently from the other frames while still
encouraging monotonicity can be seen in the bottom right plot
of Figure 3: Although some phonemes are wrongly assigned
to some early frames without singing, this mistake does not
impede the correct monotonic alignment at later frames.

V. ALIGNMENT EVALUATION

We explain the experimental design for phoneme and word
level lyrics alignment in Section V-A and present and discuss
the results in Section V-B.
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A. Experimental design

Each test song is processed in full length at once by the
model, so that no segmentation of audio and text is required,
i.e. DTW is done on the score matrix S = [sm,n]m,n for the
whole song.

1) Phoneme level alignment: We use the NUS-48E Sung
and Spoken Lyrics Corpus [9] to assess phoneme level lyrics
alignment. It is a collection of 48 solo singing recordings4 of
length between 53 seconds and 3.5 minutes with manually
transcribed phonemes and their time stamps. 12 amateur
singers sing 4 English songs each, the set comprises 20
unique songs. In order to evaluate phoneme alignment on
mixtures, we mix each singing recording with an instrumental
accompaniment of one song of the MUSDB test set.

We train the proposed model as explained in Section IV-B
and call it JOINT1. Then, we test if some modifications
regarding the training data can improve phoneme alignment.
Since pre-training on speech data enabled learning the corre-
spondence between phonemes and audio, speech data might
also be beneficial when continuing training on singing voice.
Therefore, we add 1000 speech-music mixtures to the MUSDB
training data and call the model trained this way JOINT2. For
training of the next model, we also add silence to the MUSDB
vocals segments before mixing them with the other stems
which results in longer instrumental sections in the training
examples. This increases the amount of audio frames that
correspond to the space token and potentially helps learning
a better acoustic model for non-vocal frames. The idea is
inspired by Gupta et al. [8] who identified acoustic modeling
of non-vocal frames as a crucial aspect of automatic lyrics
alignment. Specifically, each vocals signal is zero-padded to
length 11 seconds. Padding is done for 50% of the signals
at the start and for 50% at the end. The model trained with
added silence and added speech is called JOINT3. We also
train a model only on speech-music mixtures for comparison.
It is called JOINT-SP.

Thereafter, we compare the best performing model from
the study above to two baselines using both solo singing
and mixtures as audio signals. The first one is the Montreal
Forced Aligner (MFA) [11] (cf. II-A) which is a GMM-
HMM. The MFA performs acoustic modeling and alignment
iteratively and processes the training and test data combined.
It is informed by the singer identity of the test songs and
performs speaker adaptation. The second baseline is a deep
learning model trained with the CTC loss [20]. It consists
of three BLSTM layers with 256 hidden units followed by a
linear layer mapping to the output size of 44 units (number
of phonemes plus CTC’s blank token). This architecture is
inspired by the work in [48]. After a comprehensive hyper-
parameter search, we found that the best performance on
solo singing is obtained using 13 MFCCs (frame sise 256,
50% overlap) plus their deltas as input features. On mixtures
it was best to use Mel-spectrograms (frame sise 512, 50%
overlap) with deltas and delta-deltas as inputs. We call these
versions CTC-MFCC and CTC-MEL, respectively. The model
is trained with batch size 1 and a learning rate of 0.001. Both

4We excluded song 09 of singer ADIZ due to incorrect annotations

baselines are trained on our MUSDB training set. They are
trained on mixtures for the evaluation on mixtures and on
the clean vocals stems for the solo singing evaluation. Pre-
training or including speech data or adding extra silence did
not improve their performance.

2) Word level alignment: We evaluate word level lyrics
alignment on the Hansen [49] and the Jamendo lyrics [7]
dataset. They are widely used for word alignment evaluation
on mixtures and comprise 10 and 20 western pop songs in En-
glish language, respectively. Also, they have been used in the
Music Information Retrieval Evaluation eXchange (MIREX)
2019 lyrics alignment task5, facilitating comparison between
the proposed method and the two best performing methods
which are from Gupta et al. (GU) [8] and Stoller et al. (ST)
[7] reviewed in section II-A.

While word alignment can be considered as less difficult
than phoneme alignment because it is coarser, these two
datasets are more challenging than the one we have at our
disposal for phoneme alignment. The reasons are that the
accompaniment is correlated with the voice, they contain
longer instrumental sections such as intros or solos, and the
transcripts are partly incomplete as some vocal sounds such
as ’ah’ or ’oh’ are sometimes neglected. Therefore, we also
test using the vocals estimate V̂ as a Voice Activity Detector
(VAD): when the estimated total vocal magnitude is lower
than 20 for a time frame, it is assumed that it is a non-
vocal frame and the score s of all space tokens is set to the
maximum score obtained for the given song. This method is
called JOINT3-VAD. The threshold was selected empirically
on the MUSDB test set by visual inspection of the vocals
magnitude for some examples. However, the alignment results
have a marginal sensitivity regarding the exact threshold value
because the VAD only reduces the largest errors as can be seen
in Figure 4.

B. Results and discussion

1) Phoneme level alignment: The results of the experiment
on training data are shown in Table I. The evaluation met-
rics are the mean and median Absolute Error (AE), which
is the absolute difference between the true and estimated
onset averaged over all phonemes of a test song, and the
Percentage of Correctly Aligned Segments (PCAS) [50]. In
this context, segments are the signal parts between onset
time stamps and each segment is labelled with one phoneme.
The PCAS measures the percentage of overlap of ground
truth and estimated segments over the whole song. The AE
compares onsets which are point estimates and does not take
the phoneme duration into account whereas the PCAS tells
which percentage of the audio signals is labelled with the
correct phoneme. This is especially critical when the alignment
is used for other downstream tasks such as informed separation
in our case. Adding speech examples (+sp.) improves all
evaluation metrics. There is less variance in the acoustic real-
isation of a phoneme in speech signals than in singing, which
facilitates learning the relation between audio and phoneme

5https://www.music-ir.org/mirex/wiki/2019:
Automatic_Lyrics-to-Audio_Alignment_Results
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TABLE I
PHONEME ALIGNMENT RESULTS ON NUS-48E CORPUS. VALUES ARE THE
MEAN OVER THE TEST SET. AE=ABSOLUTE ERROR, PCAS=PERCENTAGE

OF CORRECTLY ALIGNED SEGMENTS.

Method Training
data

mean
AE [s]

median
AE [s]

PCAS
[%]

SNR
[dB]

JOINT-SP sp. 27.9382 26.5665 1.76
solo

singing
JOINT1 MUSDB 0.0884 0.0158 81.49
JOINT2 MUSDB+sp. 0.0611 0.0149 85.91
JOINT3 MUSDB+sp.+sil. 0.0573 0.0149 85.94

JOINT-SP sp. 26.0748 23.7819 3.62

5JOINT1 MUSDB 0.1122 0.0173 79.13
JOINT2 MUSDB+sp. 0.0638 0.0160 84.41
JOINT3 MUSDB+sp.+sil. 0.0631 0.0158 84.66

JOINT-SP sp. 33.4086 30.8661 0.97

-5JOINT1 MUSDB 0.2639 0.0360 68.91
JOINT2 MUSDB+sp. 0.1634 0.0254 75.38
JOINT3 MUSDB+sp.+sil. 0.1425 0.0247 76.02

labels statistically. Adding silence (+sil.) reduces the mean AE
more than the median AE, and slightly improves the PCAS.
As observed in [8], it helps recognizing non-vocal frames and
makes the alignment more robust. Training only on speech-
music mixtures (JOINT-SP) does not allow to align phonemes
on singing voice. As a result of this study, we use the model
JOINT3 for comparison with other methods on phoneme and
word level alignment.

In Table II, JOINT3 is compared to the baselines MFA,
CTC-MFCC, and CTC-MEL. The proposed method outper-
forms the baselines on solo and mixed singing voice. Note that
the baselines have been trained on mixtures for the evaluation
on mixtures (cf. V-A1). The fact that JOINT3 works well also
on mixed singing, even with low SNRs shows the effectiveness
of the voice separation component inherent in our alignment
approach. In practice, the baselines could be used with voice
separation as pre-processing step. However, it is likely that
performance is worse than on solo singing. Comparing CTC-
MFCC and JOINT3 shows that DTW-attention is more ef-
ficient in this limited data setting than CTC training. This
can be explained by the fact that the CTC loss maximizes
the likelihood of the target phoneme sequence given acoustic
input features and marginalizes over all possible alignments.
Therefore, the alignment that provides the correct frame/label
synchronization is not preferred over other alignments. In
contrast, the separation objective of the proposed method
strongly favors the correct synchronization because it makes
the phoneme information useful for the separation. The PCAS
of the proposed approach is above 80 % for SNRs of 0dB and
higher. This makes it a suitable method to produce phoneme
alignments for datasets on which models for other tasks are
trained.

2) Word level alignment: The word alignment results on the
Hansen (H) and Jamendo (J) dataset are shown in Table III.
The metrics are the mean and median Absolute Error (AE)
(explained in V-B1) and the percentage of correctly aligned
words within a tolerance of 0.3 seconds. A boxplot of the
AEs on the Jamendo data set is shown in Figure 4. The
mean and median values in the boxplot are taken over all
AEs on the whole test set while the values in Table III are
taken per song and are then averaged over all songs following

TABLE II
PHONEME ALIGNMENT RESULTS ON NUS-48E CORPUS. VALUES ARE THE
MEAN OVER THE TEST SET. AE=ABSOLUTE ERROR, PCAS=PERCENTAGE

OF CORRECTLY ALIGNED SEGMENTS.

Method mean
AE [s]

median
AE [s]

PCAS
[%]

SNR
[dB]

JOINT3 0.057 0.015 85.94 solo
singingMFA 0.073 0.030 77.94

CTC-MFCC 0.071 0.034 76.49
JOINT3 0.063 0.016 84.66

5MFA 1.468 1.089 46.92
CTC-MEL 0.198 0.078 57.61

JOINT3 0.077 0.018 82.17
0MFA 4.523 3.756 25.61

CTC-MEL 0.513 0.267 46.94
JOINT3 0.143 0.025 76.21

-5MFA 7.079 6.172 10.03
CTC-MEL 1.590 1.087 30.58

0.001 0.01 0.1 1.0 10.0
Absolute error in seconds (logarithmic scale)

JOINT3-VAD

JOINT3

GU [8]

ST [7](MV)

ST [7](SV)

0.047 0.774

0.048 1.421

0.041 0.168

0.200 0.734

0.239 0.465median
mean

Fig. 4. Boxplot of the absolute alignment errors on the Jamendo data set [7].
The boxes extend from the first to the third quartile. The whiskers extend
from the first to the 99th percentile.

the procedure of MIREX. Using the VAD reduces the mean
AE and barely influences the median AE and overall error
distribution. It can be seen in Figure 4 that the VAD decreases
the largest errors. This happens because using VAD reduces
the number of phonemes that are wrongly assigned to frames
of long instrumental parts. We observed that changing the VAD
threshold affects the results only marginally.

The baseline ST [7] has been evaluated for training and
testing on Separated Vocals (SV) and Mixed Vocals (MV) by
its authors. In Table III it can be seen that the baselines used
considerably more training data than the proposed method.
They have a lower mean AE than our method while the median
AE is roughly the same. Figure 4 shows that the overall error
distribution of the proposed method is very similar to the

TABLE III
WORD ALIGNMENT RESULTS ON THE HANSEN (H) [49] AND

JAMENDO (J) [7] DATA SET. VALUES ARE THE MEAN OVER TEST SONGS.

Method Songs for
training

mean
AE [s]

median
AE [s]

% within
0.3s

H J H J H J
ST [7] (SV) 39232 0.39 0.38 0.09 0.10 88 87
ST [7] (MV) 39232 - 0.82 - 0.10 - 85

GU [8] 3913 0.10 0.22 0.04 0.05 97 94
JOINT3 82* 1.47 1.86 0.06 0.10 83 80

JOINT3-VAD 82* 0.79 0.88 0.06 0.08 85 81
*plus 4.9 hours of speech music mixes (equals the length of 98 songs
of 3 minutes)
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state-of-the-art method GU [8] with the difference that some
larger errors are produced which increase the mean AE. We
observed that those outliers occur due to two reasons. Firstly,
our method cannot cope well with vocal sounds that are not
included in the given lyrics transcript because any vocal sound
in an audio frame makes the model assign a higher score to the
phonemes than to the space token (cf. equation (3)). This can
result in assigning the first phoneme of the word after a non-
transcribed sound to the frame of this non-transcribed sound
and hence to predicting the onset too early. Secondly, the
VAD does not capture all non-vocal segments perfectly and the
model might confuse similar sounding instruments with vocals
and assign high scores to phonemes instead of silence, which
influences the DTW path. The baseline models learn more
advanced acoustic models (triphone and genre-specific [8] or
character level [7]) on more training data than our method. We
think that this is the reason why they are more robust to those
failure modes. They were the first to produce mean AEs below
one second in the MIREX lyrics alignment task on mixtures.
Considering the error distributions in Figure 4, the proposed
method can be seen as a less data intensive alternative to the
baselines. This is especially interesting for alignment of lyrics
in other languages than English for which training data are
scarcer.

To conclude the alignment evaluation, it can be said that
the proposed method is able to align phonemes accurately
on mixed singing voice when accurate transcripts are pro-
vided. Performance decreases when challenges such as long
instrumental parts or inaccurate transcripts are faced, but
performance is not far from the state-of-the-art on word level
alignment in this case while less training data are used. DTW-
attention trained with the separation objective yields better
alignments than CTC training in the considered limit data
setting.

VI. SINGING VOICE SEPARATION EVALUATION

We explain the experimental design in Section VI-A and
present and discuss the results in Section VI-B.

A. Experimental design

We use the 45 songs of the MUSDB [4] test set that are
in English language along with their text transcripts for the
separation evaluation. In total, our test set comprises 1461
segments with a total length of 2.9 h. The audio signals were
downsampled to 16 kHz.

1) Open Unmix reference and joint approach: As a refer-
ence, we train the original Open Unmix model [1] on our
MUSDB training data and call it UMX1. We also train it
with the exact same training data and procedure as the best
alignment model, JOINT3, i.e. pre-training on speech, adding
silence to vocals, and adding speech data when training on
singing voice (cf. Section V-A1), and call it UMX2. In order
to evaluate the joint alignment and separation approach, we
evaluate JOINT3.

2) Sequential approach: For the sequential approach (cf.
section III-D and Figure 1), we use JOINT3 as the alignment
model, providing alignments for a dedicated text-informed
separation model which we call SEQ. Two baselines (BL) are
provided. They use the exact same model as SEQ but, instead
of one-hot vectors representing phonemes, they get different
side information. For SEQ-BL1, every element in Y is the
same one-hot vector and the given alignment path assigns the
last element of H to all audio frames, i.e. pn = (M,n)∀n.
This means that no information about the singing voice is pro-
vided to SEQ-BL1. The second baseline, SEQ-BL2, receives
the alignments provided by JOINT3 but all phonemes are
represented with the same one-hot vector and the space token
(silence) is represented with a different one-hot vector. This
means the information of aligned phonemes is reduced to voice
activity information for SEQ-BL2. Since the two baselines
have the exact same architecture and number of parameters as
SEQ, the effect of text as a side information can be evaluated.

3) Evaluation on mixtures with fixed SNR: For the ex-
periments above, all models are evaluated with the original
mixtures of the MUSDB dataset. Beyond that, we evaluate
some models again and, this time, we mix the voice and
accompaniment with a fixed SNR of 0, -5, and -10 dB. The
SNR is computed on each test segment individually. This
experiment allows us to investigate the effect of text as a side
information on mixtures with different degrees of difficulty
for singing voice separation. As reported in [5], lower SNRs
usually decrease the separation quality.

B. Results and discussion

In Table IV, the separation evaluation scores are presented
for several methods. The metrics are the Source-to-Distortion
Ratio (SDR), Source-to-Interference Ratio (SIR), and the
Source-to-Artefacts Ratio (SAR) [51] which are computed
on one second long non-overlapping evaluation frames using
museval with BSSEval v4 [52] following the Signal Separation
Evaluation Campaign [53]. We differentiate between the three
annotated vocals properties of the test segments regarding the
number of singers and the simultaneous presence of different
phonemes (cf. Section IV-A). The values are the median over
all evaluation frames within a property category. Higher values
indicate better performance. Beyond, the Predicted Energy at
Silence (PES) measures the energy of the estimated vocals in
evaluation frames where the true vocals are all-zero, and the
Energy at Predicted Silence (EPS) measures the energy in the
true vocals for evaluation frames where the estimate is all-zero
[14]. The presented values are the mean over all evaluation
frames and lower values indicate better performance. The
SDR, SAR, SIR are not defined for frames with a silent
estimate or ground truth, so that the PES and EPS complement
them for a complete evaluation. Note that a comparison of the
presented performance scores with other models trained and
tested on MUSDB is not straightforward because we were
limited to the songs with English lyrics for training and testing.

1) Open Unmix reference and joint approach: The scores
of UMX1 are lower than for the state-of-the-art version of
Open Unmix [1]. The reason is the difference in training
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TABLE IV
SEPARATION EVALUATION RESULTS IN DB. VALUES FOR SDR, SIR, SAR ARE MEDIANS OVER EVALUATION FRAMES, HIGHER VALUES ARE BETTER.

VALUES FOR PES AND EPS ARE THE MEAN OVER EVALUATION FRAMES AND LOWER VALUES ARE BETTER.

a) 1 singer b) 2+ singers 1 phon. c) 2+ singers 2+ phon.
Method Training data Side info Y SDR SIR SAR SDR SIR SAR SDR SIR SAR PES↓ EPS↓

UMX1 MUSDB - 4.32 8.62 6.73 4.45 8.73 6.56 3.61 8.38 5.39 -72.26 -89.21
UMX2 MUSDB+sp.+sil. - 4.06 8.62 6.22 4.31 8.30 6.56 3.85 7.87 5.69 -75.74 -97.06
JOINT3 MUSDB+sp.+sil. phonemes 3.69 7.38 6.51 3.92 7.29 6.51 3.92 7.29 6.17 -84.09 -81.96

SEQ-BL1 MUSDB constant 4.77 9.52 7.16 4.93 9.39 6.91 4.20 9.06 5.77 -93.57 -87.45
SEQ-BL2 MUSDB voice activity 4.74 9.18 6.83 4.56 9.14 6.46 3.75 8.62 5.28 -101.39 -80.51

SEQ MUSDB aligned
phonemes 5.08 10.41 6.82 4.89 10.21 6.51 3.86 9.82 5.03 -95.63 -85.98

(↓: lower values are better)

data such as the amount (we excluded non-English songs
and multi-text segments), sampling rate, number of channels,
and augmentation. In the original procedure, different random
segments of 6 seconds length are cut out of the tracks at every
epoch, whereas we are bound by the segment-wise aligned
lyrics. However, this simulates the scenario which we inves-
tigate in this work: a limited amount of audio data available.
Also, we focus on one model instance with vocals as target in
order to investigate the effect of text as side information for the
vocals estimate. In [1], four instances are used to estimate the
four MUSDB targets which are combined using generalized
Wiener filtering. UMX2 performs worse than UMX1. This
indicates that the training data and process used for JOINT3
which enable the model to learn an alignment decrease the
separation performance. The evaluation scores for JOINT3
show that the model has learned the separation task jointly
with the alignment. However, the evaluation scores are lower
than for the original Open Unmix model (UMX1 and UMX2).
In the joint approach, the two encoders have to learn repre-
sentations that enable both alignment and separation, which
is worse for the separation than dedicated representations.
JOINT3 was evaluated using the soft alignments provided
by DTW-attention. However, using hard alignments of DTW
instead has only marginal impact on the results. In fact, DTW-
attention selects the same phoneme as the DTW path for 84%
of all frames on the MUSDB test set, if we consider the
phoneme with the highest weight as the one being selected,
which is a reasonable assumption given the sharpness of the
distribution (c.f. Figure 3). We conclude that joint alignment
and separation is possible but not beneficial for the separation.

2) Sequential approach: The evaluation scores of the se-
quential approach SEQ are better than those for the joint ap-
proach, JOINT3. This is an expected result because dedicated
representations can be learned by SEQ as discussed above.
They are also better than those for the original Open Unmix
model trained on the same data, UMX1. This improvement has
two potential reasons: The proposed model has more capacity
because of the two encoders and it uses text as additional
information. We would like to know to which extent the
performance increase is due to the text information. This can
be seen when comparing SEQ to SEQ-BL1 and SEQ-BL2
which have all the same capacity. The text-informed model
SEQ improves the SIR across all vocals properties compared
to the less informed baselines. When only one singer is present

TABLE V
WORD ERROR RATE [%] OF THE LYRICS TRANSCRIPTION METHOD [54]

Method Side info Y a) b) c)
Mixture 76.06 78.44 89.24

SEQ-BL1 constant 68.30 70.88 83.25
SEQ-BL2 voice activity 63.34 66.81 79.00

SEQ aligned phonemes 52.76 51.81 64.29
True vocals 37.83 30.85 58.45

(a) also the SDR is improved through the text information.
The SAR is decreased when using text information with the
decrease becoming stronger over categories a), b), and c). This
shows that text information is most useful when only one
person is singing. We discuss the limitations below in Section
VI-B5. SEQ-BL2 has the lowest PES, which means it performs
best on frames without vocals and thus uses the provided
voice activity information. SEQ has the second lowest PES
which indicates that it also uses the vocal activity information
inherent in aligned text.

In order to evaluate an additional aspect of the sepa-
rated singing voice signals, we automatically transcribe the
lyrics from the voice estimates for the MUSDB test set
using the state-of-the-art system [54] and compute the Word
Error Rate (WER). The transcription system was trained
on monophonic solo singing recordings of the Smule Sing!
300x30x2 dataset [55] and uses a language model built from
lyrics [54]. The results in Table V show that the text-informed
model SEQ produces a lower WER in each vocals category
than the baselines. This means that the given phoneme infor-
mation helps to preserve the characteristic phoneme properties
in the separated voice signals.

An illustrative example is given in Figure 5. In the shown
segment, a female singer sings the words ”right there almost
got you”. The phonetic transcription of this line is ”> R AY
T > DH EH R > AO L M OW S T > G AA T > Y UW >”,
where ’>’ denotes the space token. The unvoiced ’s’ sound
(in ”almost”) is missing in the estimate of the non-informed
model (SEQ-BL1) but when using the text (SEQ) the model is
able to separate it. Unvoiced sounds with high energy at high
frequencies are difficult to differentiate from drum sounds such
as cymbals, which makes text a valuable extra information. It
can also be seen that the harmonic structure of the vowels
is separated more clearly when using text. This leads to a
clean sound and reduces interferences. However, it can also
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SEQ-BL1 SEQ SEQ	(altered	text) True	vocals

missing	's' 's'	is	present 's'	is	presentmissing	's' added	's'clean	harmonics

Hz

Fig. 5. Magnitude spectrograms of a singing voice obtained with different types of side information. SEQ-BL1: Meaningless side information, SEQ: aligned
original phoneme sequence, SEQ (altered text): aligned modified phoneme sequence. On the right the true vocals are shown for comparison.

lead to artefacts, especially when multiple singers are present.
Listening examples are provided online6.

3) Relevance of the phonetic prior information: In order
to test what kind of information is derived from the phoneme
sequence by the model SEQ, we feed uniform white noise
generated in the time-domain as input to the audio encoder at
test time. We use phoneme sequences of the MUSDB test set
as input to the text encoder. The alignment information of the
phonemes with respect to their corresponding audio mixture
is also provided. In the provided audio examples6, it can be
observed that the model filters the white noise so that the
given phonemes become audible. The experiment shows that
the model learned the spectral characteristics of the phonemes
and how to use this information for the voice estimation. This
explains why the separation with SEQ leads to a lower WER
compared to the baselines.

Next, we test how much the model SEQ relies on the text
information if it is conflicting with the observed audio mixture.
To this end, we exchange some phonemes in the text after the
alignment has been obtained with the original text. Using the
example in Figure 5, we replaced the ’s’ in ’almost’ with an ’o’
so that its phonetic transcription became ”AO L M OW OW T”
and we replaced the last word ’you’ by ”S S”. In Figure 5, it
can be seen that the vocals estimate changes accordingly (SEQ
(altered text)). The high frequency energy of the ’s’ sound is
now missing where it was correctly estimated before (SEQ)
for the word ’almost’. The spectral characteristics of ’s’ are
added in the last frames where the word ’you’ was actually
pronounced and where a clear harmonic structure was visible
when the correct text was used (SEQ). We refer the reader
to the audio examples for better illustration. This shows that
the text information is actively used to estimate the voice and
can even outweigh the information from the observed mixture.
This can lead to a better separation as shown above but it can
also lead to artefacts when the alignment or the transcription
is inaccurate. Editing the phoneme sequence allows us to
edit the obtained singing voice signal, e.g. to correct small
pronunciation mistakes.

4) Evaluation on mixtures with fixed SNR: In Table VI,
the separation results evaluated on mixtures with manually
fixed SNRs are shown. The three annotated vocals properties

6https://schufo.github.io/plla_tisvs/

TABLE VI
SEPARATION EVALUATION RESULTS FOR MIXTURES WITH DIFFERENT
SNRS. ALL VALUES ARE IN DB. EVALUATION SCORES ARE MEDIANS

OVER EVALUATION FRAMES WITHIN A VOCAL CATEGORY.

a) b) c)
Method SNR SDR SIR SAR SDR SIR SAR SDR SIR SAR
UMX1

0
8.00 12.65 10.60 7.16 11.87 9.75 4.90 10.35 6.93

SEQ-BL1 8.59 13.62 11.04 7.57 12.82 10.00 5.43 11.62 7.43
SEQ 8.36 13.77 10.27 7.34 13.04 9.51 4.94 11.73 6.43

UMX1
-5

4.45 8.47 6.93 4.08 8.12 6.18 2.51 6.15 4.17
SEQ-BL1 4.98 9.26 7.32 4.56 8.84 6.55 3.01 7.00 4.93

SEQ 5.03 10.06 6.83 4.66 9.76 6.29 3.08 7.95 4.10
UMX1

-10
0.91 4.01 3.46 0.81 3.39 2.42 0.03 0.65 1.78

SEQ-BL1 1.16 4.07 3.91 1.17 3.87 3.09 0.21 0.69 2.42
SEQ 1.75 6.09 3.38 1.86 5.83 2.87 0.94 3.13 1.74

of the test segments are differentiated and the values are the
median over evaluation frames within each vocals category (a,
b, c). For all SNRs and all vocals categories, the text-informed
model SEQ achieves higher SIRs than both baselines. The
SAR is reduced when using text information on all SNRs. The
improvement of the separation through text becomes stronger
when the SNR becomes lower. When the SNR is -10 dB
also the SDR is clearly improved, even on test segments with
multiple singers (b and c). We can conclude that text-informed
singing voice separation is more beneficial in challenging
conditions whereas it can lead to degraded performance in
very easy conditions.

5) Limitations: The discussion above in VI-B3 shows that
accurate phoneme alignment and correct transcripts are nec-
essary to achieve improvements through text. Otherwise, the
vocals estimate will be degraded. In the case of multiple
singers singing multiple phonemes (category c), the text con-
tains information only about a part of the vocals signal, which
is defined as mixture of all voice sources in MUSDB. Hence,
the text-informed model SEQ as well as the model SEQ-BL2,
which is informed by voice activity information derived from
aligned text, might suppress the background singers when the
lead vocals pause. Since the ground truth vocals contain all
singers, this leads to lower evaluation scores. However, it can
also be seen as an advantage if only the lead vocals are the
source of interest. We refer the reader to the additional audio
examples7 to illustrate the points discussed above.

7https://schufo.github.io/plla_tisvs/
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VII. CONCLUSION

The goal of this work was to investigate to which extent
singing voice separation with deep neural networks can be
improved through text information provided by lyrics tran-
scripts. Since lyrics are usually not aligned with the observed
mixture signals, we proposed a joint approach to phoneme
level lyrics alignment and text-informed singing voice separa-
tion. Experimental evaluation showed that phoneme alignment
can benefit from the separation component when the singing
voice is mixed with other instruments. Moreover, the proposed
alignment method achieved competitive results on two word
level alignment test sets although it used less training data than
state-of-the-art methods. In order to improve the separation
performance, lyrics should be aligned first and subsequently
be processed by a separation model. With this sequential
approach, a text-informed model achieves higher separation
quality than the baselines mainly in terms of SIR. The pro-
posed model uses phoneme side information actively to shape
the voice estimates. This preserves the phonetic information in
the estimates but can also lead to degraded performance in case
of inaccurate alignments or transcriptions. The impact of text
is especially noticeable in challenging conditions such as low
SNRs. One possible direction for future work is a comparison
between phonemes and other types of side information such
as pitch.
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[3] A. Défossez, N. Usunier, L. Bottou, and F. Bach, “Demucs: Deep
extractor for music sources with extra unlabeled data remixed,” arXiv
preprint arXiv:1909.01174, 2019.
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