
HAL Id: hal-03323514
https://telecom-paris.hal.science/hal-03323514

Submitted on 21 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian Information Gain to Design Interaction
Wanyu Liu, Olivier Rioul, Michel Beaudouin-Lafon

To cite this version:
Wanyu Liu, Olivier Rioul, Michel Beaudouin-Lafon. Bayesian Information Gain to Design Interaction.
Nikola Banovic, Per Ola Kristensson, Antti Oulasvirta, and John H. Williamson. Bayesian Methods
for Interaction Design, Cambridge University Press, 2022. �hal-03323514�

https://telecom-paris.hal.science/hal-03323514
https://hal.archives-ouvertes.fr

Bayesian Information Gain to Design Interaction

Wanyu Liu, Olivier Rioul, and Michel Beaudouin-Lafon

Abstract

This chapter discusses a perspective on designing interaction by
quantifying information that reduces the computer’s uncertainty about
the user’s goal. We begin with how to quantify uncertainty and in-
formation using Shannon’s information-theoretic terms and how to
optimize decisions under uncertainty using an expected utility func-
tion with Bayesian Experimental Design. We then describe the BIG
framework – Bayesian Information Gain – where the computer “runs
experiments” on the user by sending feedback that maximizes the
expected gain of information by the computer, and uses the users’
subsequent input to update its knowledge as interaction progresses.
We demonstrate a BIG application to multiscale navigation, discuss
some limitations of the BIG framework and conclude with future pos-
sibilities.

1 Introduction

Imagine Alice and Bob are playing the 20 questions game1. Alice has a
number between 1 and 100 in mind and Bob can ask up to 20 questions to
which Alice can reply only ‘yes’ or ‘no’ to guess that number. To maximize his
chances of winning, Bob asks questions that give him maximum information
at each step. He starts with “Is it between 1 and 50”? Alice replies “No”.
Bob continues with “Is it between 51 and 75”? Alice says “Yes”. And the
game continues until Bob guesses the correct number. Rather than asking
less informative questions, such as “Is it between 1 and 10?”, which would
leave Bob with a range between 11 and 100, he optimizes the questions to
reduce his uncertainty about the number in Alice’s head.

1 https://en.wikipedia.org/wiki/Twenty_Questions

1

https://en.wikipedia.org/wiki/Twenty_Questions

Twenty questions is a common spoken parlor game, but how is it related
to our interaction with computers? We are familiar with the notion that
we give inputs (or commands) to the computer which in return executes
these commands in a predetermined way. For example, when looking for a
particular item on the web, we click on links to navigate the pages and the
computer simply displays the pages. What if it could be more active by
asking more informative questions to find out which item we are looking for?

In this chapter, we discuss an information-driven approach to design in-
teraction. Information is defined in terms of the computer’s knowledge about
what the user wants. At the beginning of the interaction, the user (the role
of Alice) has certain goals in mind, e.g. looking for a particular item on a
website or typing a particular word on the keyboard. The computer (the
role of Bob) has some uncertainty about the user’s goal. This uncertainty is
represented by the computer’s prior knowledge, expressed in a Bayesian prob-
abilistic model. When receiving input from the user, the computer updates
its knowledge about what the user is looking for. Therefore, the information
carried by the user input is the knowledge gained by the computer to discover
the user’s goal. We call this framework the Bayesian Information Gain (BIG)
framework; it is based on Bayesian Experimental Design [5] using the crite-
rion of information gain, also known as mutual information in information
theory [2].

One can simply use BIG to measure the information sent by the user
to the computer. However, by manipulating the feedback to maximize or
leverage the expected information gain from the user’s subsequent input,
the computer can increase the information gain from the user, improving
interaction efficiency.

2 Bayesian Information Gain Framework

The key concepts of the BIG framework are uncertainty and information
on one hand, and experimental design on the other. We first go through
these two concepts, described in information-theoretic terms (§ 2.1) and in
Bayesian probability-theoretic terms (§ 2.2). This will help clarify the no-
tion of “making optimal decisions under uncertainty”. Finally we put it all
together in the BIG framework (§ 2.3).

2

2.1 Uncertainty and Information

2.1.1 Entropy as a Measure of Uncertainty

Figure 1: Shannon’s communication scheme.

Information theory was originally proposed by Claude Shannon [9] using
a communication paradigm (Fig. 1): A source produces messages, which are
adapted by a encoder before being sent over a channel, and then decoded by
a decoder to the final destination. The pair of source and encoder is called
the emitter and the pair of decoder and destination is the receiver.

The emitter inputs X to the channel and the channel outputs Y to the
receiver. Since there might be noise in the channel, output Y does not always
equal input X. The semantic aspect of communication is not relevant to the
engineering process of transmitting a source message through a channel [9].
Here the significant aspect of communication is only related to the probability
of each possible outcome. Therefore, X and Y refer to random variables 2

with respective probability distributions p(x) and p(y), and the channel is
completely described by the probability distribution of Y conditional on X,
denoted by p(y|x).

The receiver has a certain uncertainty on the encoded source message X,
a random variable that can take several values. This uncertainty is captured
by the entropy H(X), a function of the distribution p(x) defined as

H(X) = −
∑
x

p(x) log2 p(x). (1)

2To simplify, we only consider discrete random variables taking a finite number of
possible values.

3

Because the logarithm is taken to base 2, the entropy is measured in bits
(binary units).

The higher the entropy, the more uncertain the outcome, the harder the
prediction. If N denotes the number of possible values of X, the entropy is
bounded by 0 ≤ H(X) ≤ log2N :

• Minimum entropy is zero when X is deterministic:

H(X) = 0 if p(x) = 0 or 1.

• Entropy is maximal when X is uniformly distributed, with N equiprob-
able values:

H(X) = log2N if p(x) = 1
N
.

Taking the Alice and Bob example, if Bob (the receiver) has no idea
which number Alice (the emitter) has in mind, he assumes a uniform distri-
bution over the numbers from 1 to 100 and uncertainty is highest: H(X) =
log2 100 = 6.6 bits. On the other extreme, if Bob somehow knows that Alice
has the number 56 in mind, uncertainty is 0. All other cases will fall between
0 and 6.6.

2.1.2 Information as a Measure of Uncertainty Reduction

After asking the first question Y =“Is it between 1 and 50?”, Bob reduces
his uncertainty by receiving Alice’s answer “No”. Now the answer is reduced
to 51 to 100, which is half of the original set. In other words, knowing the
specific answer Y = y (‘No’) has reduced the uncertainty about X: The
remaining uncertainty is naturally captured by the entropy of X conditional
on Alice’s answer Y = y:

H(X|Y = y) = −
∑
x

p(x|y) log2 p(x|y). (2)

Knowing Alice’s answer, the distribution over the remaining numbers is still
uniform; the new uncertainty can be calculated as H(X|Y = y) = log2 50 =
5.6 bits. So in this round, he gained exactly H(X)−H(X|Y =y) = 6.6−5.6 =
1 bit of information. Had Bob asked the question Y ′ =“Is it between 1
and 10?” and had Alice reply “No”, he would have gained only H(X) −

4

H(X|Y ′=y) = 6.6 − log2 90 = 0.1 bits of information. That is why we
consider this question less informative. Note that 1 bit of information gain
is here the maximum possible since Bob’s question can only be answered by
the binary alternative ‘yes’ or ‘no’.

Knowing the answer Y = y from Alice decreased Bob’s uncertainty (in-
creased Bob’s knowledge) about X. This specific case provides a certain
amount of information, given by H(X) − H(X|Y = y). The expected re-
maining uncertainty (averaged over all possible values y) is known as the
conditional entropy :

H(X|Y) =
∑
y

p(y)H(X|Y = y) = −
∑
y

∑
x

p(x, y) log2 p(x|y) (3)

where p(x, y) denotes the joint probability distribution of X and Y . The
expected average information gain is then given by H(X)−H(X|Y), which
is the mutual information between the two random variables X and Y :

I(X;Y) = H(X)−H(X|Y) =
∑
y

∑
x

p(x, y) log
p(x, y)

p(x)p(y)
. (4)

In the latter expression we have used the formula p(x, y) = p(x|y)p(y) relating
joint, conditional, and marginal probability distributions. It can be shown
that I(X;Y) is always nonnegative [9], hence on average, knowledge of Y
always reduces uncertainty about X.

It is also commonly considered that information is transmitted over a
noisy channel, therefore some information might get lost: Alice may not hear
the question correctly and thus gives the wrong answer, or Bob might not
hear the answer correctly. Mutual information I(X;Y) captures the actually
transmitted information over the channel (Fig. 1). Mutual information is
also bounded by two quantities: 0 ≤ I(X;Y) ≤ H(X):

• If no message gets transmitted correctly from the source to the receiver,
(because the channel is too noisy) mutual information drops to its
minimum 0;

• If all messages get transmitted perfectly from the source to the receiver,
then the remaining uncertainty is H(X|Y) = 0 and mutual information
is maximized, equal to the source entropy H(X).

5

2.2 Bayesian Experimental Design

So how does Bob choose which question to ask? In other words, if he
wants to guess the right number as efficiently as possible, how does he op-
timize the questions? This can be a rather complex problem depending on
how Bob perceives Alice’s behavior and on his previous knowledge of how
she is inclined to choose a specific number. Perhaps Bob knows that Alice’s
lucky number is 13, and she would rather pick her lucky number than any
other number like 56. Or perhaps Alice is mathematically inclined and is
known to prefer prime numbers to composite ones, and so on.

This can be given a probability-theoretic framework as an instance of a
parameter estimation problem: Bob wants to estimate parameter θ, an un-
known value that Alice is thinking about. To estimate θ, Bob has at his
disposal some set of observations on Alice, or some measured data Y = y.
Bob assumes some statistical model of Alice’s behavior as a probability dis-
tribution pθ(y).

In a Bayesian setting, Bob assumes a prior distribution p(θ) of the un-
known value that may help his estimation. Without any prior knowledge,
he can simply assume that θ is uniformly distributed as in the 20 questions
example described above. But if Bob has some prior knowledge about Alice,
p(θ) may be more informative. Since θ is now the outcome of a random vari-
able Θ, the statistical model can then be seen as a conditional distribution
pθ(y) = p(y|θ) of Y given Θ. Using this, Bob can then update (hopefully
improve) his knowledge by applying Bayes’ rule to compute the posterior
distribution of θ given his observations:

p(θ|y) =
p(y|θ)p(θ)
p(y)

.

The theory of Bayesian experimental design [1] was originally proposed by
Lindley [5], inspired by Shannon’s work [9]. In this framework, Bob designs
an experiment X = x to challenge Alice and receives an observation Y from
Alice that depends on X and, of course, also on the parameter θ that she
is thinking about. Alice’s behavior model is now given by the conditional
distribution p(y|x, θ) and Bob tries to optimize the experiment outcome X =
x using some utility function U(x) before updating the posterior distribution
using Bayes’ rule:

p(θ|x, y) =
p(y|x, θ)p(θ)

p(y|x)
(5)

6

where
p(y|x) =

∑
θ

p(y|x, θ)p(θ)

is an average conditional distribution which can be seen as a “communication
channel” between Bob and Alice. Here we have used that p(θ|x) = p(θ)
because the parameter Θ unknown to Bob is a priori independent from the
experimental design X.

The utility U(x) is computed from the prior and posterior distributions
and is averaged over all possible Alice’s outcomes y (expected utility). It
can be defined as the information gained about the random variable [5], or
the financial or other cost of performing the experiment. Maximizing U(x)
provides the optimal decision under uncertainty (with respect to the given
utility function). In other words, when designing an experiment, the goal is
to maximize the expected utility of the experiment’s outcome.

Interaction between Alice and Bob can further be modelled as a sequence
of experiments : Each question Bob asks is an “experiment” on Alice and the
criterion for choice of the experiment then becomes to maximize the expected
utility between the current prior and posterior distributions. At every step,
the old posterior becomes the new prior and is further updated from the
new experiment. Ideally the process continues until no uncertainty remains,
which means that θ is perfectly known. This corresponds to a deterministic
Θ = θ given all previous experiments.

2.3 Putting it Together – Bayesian Information Gain

BIG is a general framework to design interaction (Fig. 2). We consider
the user Alice and the computer Bob. Here the goal of the computer is to
ask “clever” questions guided by a utility function to find out what the user
wants. The computer does so by “running experiments” on the user through
the feedback X = x that it provides, and using the user’s subsequent input
Y = y as the outcome of the experiment to update its knowledge about the
user’s goal Θ = θ.

BIG uses the following notations that are common for Bayesian Experi-
mental Design [5]:

1. The random variable Θ represents the possible intended targets in the
user’s mind.

7

Figure 2: The BIG framework. There are three key random variables: The
potential targets Θ, system feedback X and user input Y . The computer also
has some prior knowledge about the user’s intended target p(θ) = P (Θ = θ)
and a user behavior function expressing what the user would do p(y|x, θ) =
P (Y = y|Θ = θ,X = x). After sending the feedback X = x and receiving the
user input Y = y, the computer updates its knowledge about the user’s goal
and calculates the information gain from the user input. In order to play a
more active role, the computer can try to maximize the expected information
gain or leverage it for better interaction by manipulating the feedback.

2. Its probability distribution p(θ) (given for all values of θ) is the prior
distribution of targets, which expresses the computer’s prior knowl-
edge about Θ. This distribution can be uniform if no data about the
user’s interests is available, or can be based on external data sources
or interaction history.

3. X represents any possible feedback provided by the computer and X =
x is a particular feedback sent to the user.

4. Y represents any particular command y issued by the user.

5. p(y|x, θ) is the probability of the user giving an input command Y = y
when she wants Θ = θ and sees X = x. This can be modeled from the
interaction history, or by user calibration, and can be user-independent
or user-dependent.

8

6. p(θ|x, y) is the computer’s updated knowledge about the user’s goal
after showing the user X = x and receiving the input Y = y from
the user. This is the posterior distribution calculated through Bayes’
theorem as in Equation (5).

7. I(Θ;Y |X = x) is the mutual information between what the user wants
and what she provides as input when seeing X = x. As explained
above, it is the difference between the entropy and the conditional
entropy:

I(Θ;Y |X = x) = H(Θ)−H(Θ|X = x, Y). (6)

Here for a given X = x, knowing Y decreases uncertainty about Θ, by
a quantity which is precisely the mutual information I(Θ;Y |X = x).

We use U(x) = I(Θ;Y |X = x) as the expected utility function in the
Bayesian experimental design: It can be interpreted as the expected
information gain, and as such is always positive. To calculate this, we
use Bayes’ theorem for entropy [2] to convert Equation (6) to:

I(Θ;Y |X = x) = H(Y |X = x)−H(Y |Θ, X = x). (7)

where the first term is given by −
∑

y p(y|x) log2 p(y|x) as in Equa-
tion (2), and the second term is −

∑
y,θ p(θ)p(y|x, θ) log2 p(y|x, θ) as in

Equation (3).

8. IG(Θ|X = x, Y = y) is the difference between the computer’s previous
knowledge H(Θ) and current knowledge H(Θ|X = x, Y = y) about
the user’s goal, representing the actual information gain carried by the
user input:

IG(Θ|X = x, Y = y) = H(Θ)−H(Θ|X = x, Y = y). (8)

Information gain might be negative if the user, e.g. makes an error,
but is positive on average since∑

y

p(y)IG(Θ|X = x, Y = y) = I(Θ;Y |X = x) ≥ 0.

Table 1 summarizes the notations in Bayesian Experimental Design and
Bayesian Information Gain respectively.

9

BED BIG

θ
parameter to be

determined
intended target in the

user’s mind
y observation user input
x experimental design system feedback

p(y|θ, x)
model for making

observation y, given
θ and x

model for user
providing input y,

given θ and x

p(θ) prior
system’s prior

knowledge about the
user’s goal

p(θ|y, x) posterior updated knowledge

I(Θ;Y |X = x)
utility of the

design x
utility of the
feedback x

IG(Θ|X = x, Y = y)

utility of the
experiment outcome
after observation y

with design x

utility of the outcome
after user input y with

system feedback x

Table 1: Notations in Bayesian Experimental Design (BED) and in Bayesian
Information Gain (BIG) respectively.

One can always calculate the actual information gain, or the information
carried by the user input informing the computer what she wants with Equa-
tion (8) – “Running a normal experiment”. By manipulating the feedback
with Equation (6), e.g. finding the X = x that maximizes or leverages the
expected information gain, the system “redesigns the experiment”, or “runs
a better experiment” on the user in order to gain more information about
the user’s goal, i.e. the intended target. The computer then plays a more
active role and therefore increases interaction efficiency.

3 Application

BIG is a general approach that can be applied to a wide range of interaction
tasks. We describe BIGnav, an application of BIG to multiscale naviga-
tion [6].

10

Multiscale interfaces are a powerful way to represent large datasets such
as maps, documents and high-resolution images. The canonical navigation
commands in this type of interfaces are pan and zoom (as seen in many appli-
cations such as Google Maps 3): Panning lets users change the position of the
view while zooming lets them modify the magnification of the viewport [3,4].

3.1 BIGnav Implementation

First we define the three key random variables in the BIG framework Θ, X
and Y for the multiscale navigation scenario:

• Θ represents any point of interest in the multiscale space. For each
target θ, the probability that it is the actual intended target is p(θ).
These probabilities constitute the a priori knowledge that the system
has about the user’s interest, and is updated as the user navigates.

• X represents any possible view provided by the system. X = x is a
particular view shown to the user. Note that the number of possible
views is potentially very large.

• Y represents any particular command y issued by the user. The possible
input commands are: move in one of the 8 cardinal directions, zoom
in or click on the target when it is big enough to be clickable. Note
that zooming out is not implemented in BIGnav: if the target is out
of view, the user should indicate in which direction it is rather than
zooming out.

(1) Interpreting user input : Given the view x shown to the user and the
user’s intended target θ, p(y|x, θ) is the probability that the user provides an
input command Y = y given θ and X = x. This probability distribution is
the system’s interpretation of the user’s intention when giving this command.
For example, if city A is to the left of the user, what is the probability of
the user giving the left command when knowing that city A is located to
her left, provided she can only go left or right? p(go left | city A is located
to the left of the current view, city A is the intended target) = 1 if the user
is completely confident about what she is doing. But maybe the user is not
accurate all the time. Say she is correct only 95% of time, then we need to

3 https://www.google.com/maps

11

https://www.google.com/maps

consider that she makes errors: p(go left | city A is located to the left of the
current view, city A is the intended target) = 0.95 and p(go right | city A is
located to the left of the current view, city A is the intended target) = 0.05.
Probability p(y|x, θ) is a priori knowledge that must be given to the system.

(2) Updating system’s knowledge: Given the view x shown to the user
and the user reaction y to that view, the system can update its estimate
p(θ|x, y) of the user’s interest with Equation (5). If the system has no prior
knowledge about the user’s intended target, e.g. at the beginning, each
θ has the same probability of being the target and p(θ) is uniform. As
the user issues commands, the system gains knowledge about the likelihood
that each point of interest be the target, reflected by the changes to the
probability distribution. This is done, for each point of interest, by taking its
previous probability, multiplying by the above user input function p(y|x, θ),
and normalizing it so that the sum of the new probabilities over all the points
of interest equals one.

(3) Navigating to a new view : With the new probability distribution after
receiving user input, BIGnav then goes over each view X = x, calculates its
expected information gain with Equation (7) and picks the view for which it
is maximal. To maximize Equation (7), BIGnav looks for a trade-off between
two entropies. To maximize the first term, the view should be such that all
user commands given that view are equally probable (for the system). To
minimize the second term, the view should provide the user with meaningful
information about the points of interest. Maximizing a difference does not
necessarily mean to maximize the first term and minimize the second, so
the maximum information gain is a trade-off between these two goals. For
example, showing only ocean will increase the first term but will also increase
the second term. After locating the view with maximal information gain,
BIGnav navigates there and waits for the user’s next input.

An interactive 1D version of this implementation can be found in a
Jupyter notebook 4 and a video is available on YouTube 5.

3.2 Comparison with Standard Navigation

In order to compare BIGnav with standard pan and zoom navigation (STD-
nav), we implemented a 2D version [6]. In this more realistic setting, we face

4 https://github.com/wanyuliu/5thComputationalInteraction/blob/master/

BIGMap.ipynb
5 https://www.youtube.com/watch?v=N2P-LFh1oLk

12

https://github.com/wanyuliu/5thComputationalInteraction/blob/master/BIGMap.ipynb
https://github.com/wanyuliu/5thComputationalInteraction/blob/master/BIGMap.ipynb
https://www.youtube.com/watch?v=N2P-LFh1oLk

a computational challenge because the system feedback X can have a huge
number of possible views. With BIGnav, we need to calculate the informa-
tion gain corresponding to every single view X = x, which would incur an
enormous computational cost if views could be centered at any pixel and have
any size. We therefore discretize the set of views by using tiles and discrete
zoom factors. This is similar to some pan-and-zoom applications where users
can pan in four directions by fixed amounts, and zoom in and out by fixed
amounts. We therefore reduce the set of commands to make computation
tractable in our prototype. We slice the view into nine regions representing
eight panning directions and a central zooming region (Fig. 3). The eight
panning regions have a 45◦ angle, and the zooming region is half the size of
the view. Furthermore, we model user behavior with a calibration session.
The results (Table 2) show that 90% of panning commands are correct and
4% are in one of the adjacent directions (Fig. 3). For zooming commands,
95% of the commands are correct while for clicking on the target, 100% of
the commands are correct.

Figure 3: Nine regions representing user input, delimited by dotted lines.
Panning regions also include the space outside the current view.

Based on this setup, we ran a controlled experiment and found that BIG-
nav was up to 40% faster than STDnav. Fig. 4 shows the number of nav-
igation steps required (x-axis) to reach the target in STDnav and BIGnav,
as well as how uncertainty and information gain evolve over time. We can
see that with STDnav, sometimes a command does not make a difference
in uncertainty, i.e. the information gain is null. This is typically the case
when the system is certain of what the user is going to do. For example,

13

Command Main Region Adjacent Regions Other Regions

Pan 0.90 0.04 0.0033
Zoom 0.95 0.00625 0.00625
Click 1 0 0

Table 2: Calibration results used as prior knowledge about the user behavior
p(y|x, θ).

when completely zoomed out, users must zoom in. Similarly, if a view con-
tains 99% of the probability distribution, users will almost certainly zoom in.
Therefore such feedback is not an “intelligent” question. On the contrary,
BIGnav optimizes the feedback at each step to gain a maximum amount of
information and reduce the computer’s uncertainty.

Figure 4: Uncertainty and information gain (IG) for each successive com-
mand in (a) STDnav and (b) BIGnav.

However, despite being more efficient, BIGnav incurs a higher cognitive
load (Fig. 5). Instead of executing users’ panning and zooming commands,
BIGnav returns the feedback that maximizes the expected information gain
from the user’s subsequent input. This new feedback might be far away from
the current view, therefore the user has to interpret what the system has just
done and reorient themselves before inputting the next command, whereas
with STDnav the user can anticipate the system response. A subsequent
version of BIGnav uses animation during the transitions between views to
help users orient themselves and anticipate their next action.

14

Figure 5: Time plot of the decrease in index of difficulty (ID) in the STDnav
and BIGnav conditions, for two trials with the same other conditions.

3.3 Other Applications

BIG is a general framework that can be applied to a wide range of interaction
tasks. Once the potential targets Θ and their probability distribution p(θ),
system feedback X, user input Y and user behavior p(y|x, θ) are modeled, one
can compute the actual information gain, or the information carried by the
user input informing the computer of what she wants. We have applied this
approach to two other areas: file retrieval [7] and collective music making [8].

BIGFile [7] is an interaction technique for fast hierarchical file retrieval
that leverages the expected information gain. Unlike BIGnav, BIGFile fea-
tures a split adaptive interface that combines a traditional file navigation
interface with an adaptive part that displays the shortcuts selected by BIG.
Users can use any shortcut in the adaptive area or simply navigate the hi-
erarchy as usual. BIGFile uses an approximate but efficient algorithm to
select shortcuts, and was shown to be up to 40% faster than standard file
navigation.

Entrain [8] is an intelligent agent for encouraging social interaction in
collective music making. Here BIG is used to adapt a probabilistic model
of individual user behavior, which is calculated based on user activity and
rhythmic periodicity, and modulates music creation at both individual and
collective levels via visual and auditory feedback.

We encourage readers to think about their own interaction scenario in a
“BIG” way: How much uncertainty and information are there in the interac-
tion loop? Is the current interaction information efficient? How to have the

15

computer play a more active role by demanding more information?

4 Discussion

In this section, we discuss some limitations of the BIG approach and propose
potential solutions as well as future possibilities.

4.1 Approximation of Prior Distribution

When no prior information is available, a common practice is to assume a
uniform distribution. Then the computer continuously updates its knowledge
when receiving user input via Bayes’ rule. The approximation of prior distri-
bution can be derived from external data. For example, for a map navigation,
it could be based on a large dataset representing the general population, such
as the popularity of tourist destinations. It could also be based the user’s
own interaction history, such as “my favorite top destinations”. In BIG-
nav [6], we showed that even with a uniform prior distribution, BIGnav is
more efficient than the standard pan and zoom navigation. The more precise
the approximation of the prior distribution, the better BIG works.

4.2 Dynamic User Behavior Model

The user behavior model is the computer’s belief about which command the
user will issue given what she wants and what she sees. In Bayesian Exper-
imental Design’s terms, it is the probability of observing an outcome given
the parameter of nature and the experiment. Similar to the approximation
of the prior distribution, the better we model it, the better BIG works. We
collected user behavior from a calibration session in BIGnav [6] and from
the literature in BIGFile [7]. In both cases this model stays constant for all
participants throughout the session. However, we know that users’ behav-
ior changes over time. Novices’ behavior is different from experts’; people
have individual differences; one’s behavior might change given a particular
environment. Therefore, a better solution is to have a dynamic user behav-
ior model, tailored to a specific user whose behavior changes due to time or
her interaction with the environment. This can be done by logging user’s
interaction over time and constructing the user behavior model from real
data.

16

4.3 Computational Cost

A crucial aspect of interaction is to provide immediate system feedback to
users’ actions. The BIG method is computationally costly since the calcula-
tion of mutual information requires the sum of all possibilities: The overall
computational cost is NΘ ×NX ×NY (N is the number of possible values).
In BIGnav, we discretized system feedback and user input to achieve real-
time feedback by the system. In BIGFile we introduced an efficient but
approximate algorithm to reduce the computing cost [7].

Other approaches are worth exploring. For example, instead of searching
the entire information space (exhaustive search), we could regularize the
search to compute the locally maximal expected information gain. We could
also use a timer to provide a first, coarse response in, e.g. 0.1s, and refine the
search if the user does not provide input. The actual optimization depends
on the exact context of use.

4.4 Other Utility Functions

While information alone can be used as the expected utility function for
an “informative experiment” to reduce uncertainty as efficiently as possible,
other measures can be considered. For example, we can add a cost to the
utility function for the estimated user’s cognitive load, so that an optimal
feedback needs to be both informative and comfortable. In BIGnav, this cost
could be a function of the estimated time for the user to get reoriented after
the new feedback.

Other utility functions might include, for example, successful completion
of a task, such as success rate, or the time to correct errors if some errors
are more severe than others, or dwell time over areas of interest in an eye-
tracking experiment. The optimal system feedback, i.e. the experiments the
computer runs on the users, depends on the chosen utility criterion.

4.5 Future Challenges

We started this chapter with an example of Alice having a number between
1 and 100 in her head and Bob trying to guess that number by asking infor-
mative questions. Similarly, we assumed that there is a finite set of potential
targets, that the user has a single intended target in her head, and that this
target does not change until it is found. BIG is a goal-oriented framework:

17

It does not support pure exploration, when the user has no intended target.
How to incorporate these situations, i.e. a changing target, no target or more
than one targets is an interesting challenge for future work.

5 Conclusion

In this chapter we introduced Bayesian Information Gain, a general frame-
work that can be applied to many interaction tasks. In order to compute
information, one needs to model Θ, the set of potential targets; p(θ), the
computer’s prior knowledge about the user’s goal; X, the possible system
feedback; Y , the possible user input, and p(y|x, θ), which models the user
behavior. BIG can then calculate how much information there is in the user
input to reduce the computer’s uncertainty, and optimize interaction effi-
ciency by having the computer extract more information at each step by
manipulating the system feedback.

BIG is an example of a probabilistic interface. Similar to other proba-
bilistic interface architectures that treat user input as an uncertain process,
BIG uses a user behavior model to represent the ambiguity of user input
for the computer. In conventional settings, there is no information-theoretic
uncertainty for the user regarding the computer’s behavior. However, when
presenting feedback to the user, the computer is uncertain about what the
user will do. From the user’s perspective, BIG presents non-deterministic
system feedback that challenges the user by leveraging a Bayesian model in
order to maximize information gain. It opens the door to a wide range of
“BIG” applications and a new era of probabilistic interaction.

References

[1] Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design:
A review. Statistical Science, pages 273–304, 1995.

[2] Thomas M Cover and Joy A Thomas. Elements of information theory.
John Wiley & Sons, 2012.

[3] George W. Furnas and Benjamin B. Bederson. Space-scale diagrams: Un-
derstanding multiscale interfaces. In Proceedings of the SIGCHI Confer-

18

ence on Human Factors in Computing Systems, CHI ’95, pages 234–241,
New York, NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[4] Yves Guiard and Michel Beaudouin-Lafon. Target acquisition in multi-
scale electronic worlds. International Journal of Human-Computer Stud-
ies, 61(6):875–905, 2004.

[5] Dennis V Lindley. On a measure of the information provided by an ex-
periment. The Annals of Mathematical Statistics, pages 986–1005, 1956.

[6] Wanyu Liu, Rafael Lucas D’Oliveira, Michel Beaudouin-Lafon, and
Olivier Rioul. Bignav: Bayesian information gain for guiding multiscale
navigation. In Proceedings of the 2017 CHI Conference on Human Fac-
tors in Computing Systems, CHI ’17, page 5869–5880, New York, NY,
USA, 2017. Association for Computing Machinery.

[7] Wanyu Liu, Olivier Rioul, Joanna McGrenere, Wendy E. Mackay, and
Michel Beaudouin-Lafon. Bigfile: Bayesian information gain for fast file
retrieval. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, CHI ’18, New York, NY, USA, 2018. Association
for Computing Machinery.

[8] Hugo Scurto, Wanyu Liu, Benjamin Matuszewski, Frédéric Bevilacqua,
Jean-Louis Frechin, Uros Petrevski, and Norbert Schnell. Entrain: En-
couraging social interaction in collective music making. In ACM SIG-
GRAPH 2019 Studio, SIGGRAPH ’19, New York, NY, USA, 2019. As-
sociation for Computing Machinery.

[9] Claude E Shannon. A mathematical theory of communication. Bell sys-
tem technical journal, 27(3):379–423, 1948.

19

	Introduction
	Bayesian Information Gain Framework
	Uncertainty and Information
	Entropy as a Measure of Uncertainty
	Information as a Measure of Uncertainty Reduction

	Bayesian Experimental Design
	Putting it Together – Bayesian Information Gain

	Application
	BIGnav Implementation
	Comparison with Standard Navigation
	Other Applications

	Discussion
	Approximation of Prior Distribution
	Dynamic User Behavior Model
	Computational Cost
	Other Utility Functions
	Future Challenges

	Conclusion

