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Abstract—Analog-to-feature (A2F) conversion is an acquisition
method thought for IoT devices in order to increase wireless
sensor’s battery life. The operating principle of A2F is to
perform classification tasks at sub-Nyquist rate, by extracting
relevant features in the analog domain and then performing
the classification step in the digital domain. We propose to use
non-uniform wavelet sampling (NUWS) combined with feature
selection to find and extract from the signal, a small set of relevant
features for electrocardiogram (ECG) anomalies detection. A
CMOS 0.18 µm mixed architecture for NUWS feature extraction
is proposed, to obtain a power consumption model for A2F.
This model can be taken into account in the feature selection
step by evaluating the energy cost of each wavelet and then
try to maximize classification accuracy while minimizing the
energy needed for extraction. We demonstrate the benefits of A2F
showing that the energy needed can be divided by 15 compared
to classical approach.

Index Terms—Analog-to-Feature converter, Bio-sensing ac-
quisition, Feature selection, Low power, Non-Uniform Wavelet
Sampling.

I. INTRODUCTION

Increasing the battery life of wireless sensors is a main
challenge. As energy consumption of wireless communication
systems represents the most significant part of the total con-
sumption, new approaches, like compressed sensing (CS) [1],
[2], have been proposed to decrease the amount of transmitted
data, by sampling at sub-Nyquist rate. CS was proposed for
full signal recovery, but it requires a complex reconstruction
step [3], [4] and is limited in terms of achievable compression
ratio [5]. Moreover, for certain applications, signal reconstruc-
tion is not always required. Analog-to-Feature (A2F) conver-
sion is an acquisition method thought for IoT devices. The aim
of this method is to decrease the amount of acquired samples
by only extracting useful information directly on the analog
signal. Transmitting only little information instead of the entire
signal allows to considerably decrease the energy consumption
due to wireless communication. Extracted information can be
used in a classification task, i.e., to detect voice activity [6],
[7] or electrocardiogram (ECG) anomalies [8].

A general architecture for A2F is proposed in [9] and
depicted in Fig. 1. This architecture is composed of several
configurable feature extractors which work in parallel. A
context detector can activate, disable or reconfigure feature
extractors depending on the application. It allows adapting
accuracy by extracting more features, to decrease the number
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Figure 1. Proposed A2F architecture in [9]

of feature to adjust the power consumption to the minimum
or to extract new features for another application. Features are
finally used in a machine learning based classifier: this final
step can be processed locally on the sensor to transmit only
the classification result or later in the chain (data hub, base
station, cloud, ...).

One of the challenges of A2F conversion is to identify
what is useful information for a given application and how
to extract it. The proposed A2F converter is based on the
non-uniform wavelet sampling (NUWS) [10]. NUWS provides
several degrees-of-freedom that enable flexibility. Therefore,
the number of features possibly extracted is very important,
solutions have to be found to select a small set of features
that provides good classification performance while having a
low power consumption. In this article, a power consumption
model of an A2F converter for ECG anomaly detection is
proposed. This model is based on state-of-the-art front-end
power consumption data and power consumption of a proposed
digital architecture for wavelet generation. We finally propose
to use some well known features selection algorithms to
maximize classification accuracy while minimizing energy
consumption.

The outline for this paper is as follows. Section II presents
the general architectures of the A2F and feature extractors, and
introduce the problem brought by NUWS and its solution. In
Section III, a power consumption model of our A2F converter
is presented. In Section IV, a solution to optimize the power
consumption by taking into account wavelet energy cost during
selection step is proposed, performance obtained for this
optimization step are then are presented. Finally, Section V



concludes the paper.

II. NON-UNIFORM WAVELET SAMPLING FOR FEATURE
EXTRACTION

In order to implement an A2F converter, feature extraction
is performed using non-uniform wavelet sampling (NUWS).
The operating principle of NUWS is to perform a wavelet
transform of the signal and then acquire a small set of wavelet
samples. In other words, the incoming signal is mixed with
several wavelets and then the result is integrated over the
support of the wavelets. Each wavelet allows to obtain a
feature. The general A2F architecture from Fig. 1 uses several
features extractors which works in parallel. The architecture
of these extractors is depicted in Fig. 2. It is composed of an
analog mixer, an analog integrator, a wavelet generator and
a control unit which defines, for a given mother wavelet, the
integration time, wavelet’s frequency, the sampling frequency
and wavelet’s time shift. After the features are extracted and
acquired by the ADC, the classification can be performed.
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Figure 2. Proposed features extractor

The aim is to design an A2F converter for ECG arrhythmia
detection. To evaluate the accuracy of our A2F, ECG signals
from the MIT-BIH Arrhythmia database [11] are used. This
database is composed of 48 ECG recording from 47 different
patients, each recording last 30 minutes and are sampled at a
frequency of 360 Hz. From these 48 recordings, 34 were used
as training dataset and 14 were used as test dataset. The signal
is divided in blocks of N = 256 samples centering every QRS
complex on the same position. The resulting dataset contains
107,044 annotated beats. A binary classification is performed,
using feedforward neural networks with one hidden layer of
ten neurons, using Softmax activation function, to detect the
presence of anomalies.

In [12], two types of wavelets are tested (Haar wavelets
and Gabor wavelets) and concludes that Haar wavelets are
good candidates for this application. Considering that these
two types of wavelet have the same level of performance, Haar
wavelets have benefits over Gabor wavelets because it is the
simplest wavelet family. It is a family of square function which
take values 0, −1 and 1. Wavelet generation and mixing can
thus be implemented in a very efficient way.

As described in [12], a Haar wavelets dictionary is built,
including wavelets with different frequencies, time shift and
length. Finally, a 502 wavelets dictionary is obtained. Given
the number of wavelets, and so the number of features,
used to describe the database, feature selection algorithms
are required to select a small set of features which provides

good classification accuracy. Some selection algorithms are
described in [12], where the benefits of Sequential Forward
Search (SFS) are shown.

The exhaustive search, which consists in testing every
possible solution quickly becomes impractical when the total
number of features increases. The SFS [13], presented in
Algorithm 1, is a well-known wrapper model, that consists
of starting with an empty set S and then selecting the locally
best feature according to the classification performance of the
tested subset J(S). In this study, the stopping condition of the
algorithm is a maximal number of selected features (d), but
it can also be stopped when none of the remaining features
allow to improve the performance.

Algorithm 1 Sequential Forward Search
(S ← ∅)
repeat

for all Xi /∈ S do
(Ji ← J(S ∪ {Xi}))

end for
(i′ ← argmax (Ji))
(S′ ← S ∪ {Xi′})
if J(S′) > J(S) then

(S ← S′)
(J(S)← J(S′))

end if
until |S| == d

In our previous study, it has been shown that, using feature
selection algorithms, a classification accuracy of 98% can be
reached by extracting 6 features. The problem is that only
the classification accuracy is considered. The easiest way to
decrease power consumption of the sensor is to decrease as
much as possible the number of features. The second way is
to reduce the number of feature extractor by extracting several
features with the same extractor. Finally, to optimize the global
power consumption, energy needed to extract the features
can be taken into account during the selection process, to
select features with high accuracy and low power consumption.
Features can require more or less energy to be extracted,
according to the time support of the related wavelet. Therefore,
an estimation of power consumption of the different parts of
the system is required.

III. POWER CONSUMPTION MODEL

Wavelet’s extraction cost can be estimated by evaluating
the power consumption of each component of the extrac-
tor. The bio-sensing front end circuit proposed in [14], and
depicted in Fig. 3, contains a low noise amplifier (LNA),
a programmable gain amplifier (PGA), a Gm-C low-pass
filter (LPF) and a 10-bit SAR analog-to-digital converter.
The amplifier stage power consumption is equal to PLNA +
PPGA = 5.04µW (see Table I) and the ADC needs
Esampling = 14.3 fJ/conversion step. The proposed filter has
a programmable cut-off frequency between 150 and 10 kHz.
NUWS requires a LPF with integrator behavior: the mini-
mum integrated frequency is fixed by the time window (the
minimum wavelet frequency). Given the minimum wavelet
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Figure 3. Bio-sensing front-end from [14]

frequency of 1.4Hz, the filter does not achieve the needed
characteristics, in terms of cut-off frequency. The problem in
the context of the realization of this integrator is to design a
first order low-pass filter with a sub-hertz cut-off frequency.
Indeed, to reduce the cut-off frequency, it is necessary to
use a larger capacitor, but its size is limited in an integrated
circuit, or to reduce the value of the transconductance. The
first order low-pass filter proposed in [15], and depicted
in Fig. 4, has a programmable cut-off frequency between
220mHz and 39.1 kHz, and has a power consumption of
1.08 µW. It has two tuning voltages,Vt2 and Vgc, allowing to
modify transconductance value with a thick/thin relationship.
Fig. 5 shows the frequency range, achieved by the LPF
proposed in [15], according to the different tuning voltages
and capacitor configurations. As Haar wavelets take values −1
and 1, during their validity period, we propose to implement
the mixing step as a switching system inverting positive and
negative inputs of the integrator. As shown in Fig. 4, the
LPF works in a single-ended mode, a buffer must be used
between mixing step outputs and integrator input to convert
signal from differential signal to single-ended signal. Table I
summarizes the performance of analog component used for
feature extraction.

As shown in [12], Haar wavelets are good candidates for
NUWS feature extraction. These wavelets are square signals,
so it means that it can be easily generated by a digital system.
Fig. 6 is a simplified schematic of our wavelet generator’s
operation. Wavelets are described by three parameters: the fre-
quency (divisor), the length and the time shift. The generator
is a clock divider that divides the clock signal to obtain a
360Hz clock signal (which corresponds to the precision of
our database). This 360Hz clock is divided a second time
to obtain the wavelet signal. As Haar wavelet are ”3 states”
signals, our wavelet generator as two 1-bit outputs. The output
Enable, represent the validity period of the wavelet, in other
words, when the wavelet is null or not, and the output Wavelet
is the waveform.
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Figure 4. Gm-C integrator

Figure 5. Frequency range achieved by LPF proposed in [15] for different
voltages [Vt2;Vgc] and capacitor configurations

This configurable wavelet generator is described in the hard-
ware description language Verilog and its power consumption
is estimated for the same technology as previously (XFAB,
0.18 µm) with an operating frequency of 2MHz. After place
and route simulation, the estimation of the power consumption
of a wavelet generator is about 22.4 µW during generation
phase. The generator occupies 0.035mm2 of silicon area. The
result of place and route step is depicted in Fig. 7.

In order to decrease power consumption of this part of
the A2F, a very well known technique, used in synchronous
circuits, called Clock Gating [16], is used. This technique
consists in disabling the clock signal in unused parts of the
circuit. Using clock gating, the power consumed by the clock
tree can be decreased: disabling the clock in unused parts of
the circuit make possible to reduce the load on the clock tree
and so to reduce the number of buffer used in the tree. Flip-
flops power consumption is also decreased because, without
clock signal, these are not triggered and so the dynamic
power is saved. The compensation of it, is that more logic
must be added to the circuit. Thanks to clock gating, power
consumption of the wavelet generator is reduced from 22.4 µW
to PGenerator = 9 µW.

Table I
PERFORMANCE SUMMARY

LNA and PGA [14] LPF [15] ADC [14]

Supply
voltage (V) 1.4 Supply

voltage (V) 1.8 Supply
voltage (V) 1

Current (A) 3.6 µ Current (A) 0.6 µ Current (A) 0.3 µ

Gain (dB) 38 –
72 C (pF) 50 SNDR(dB) 56.1

Cut-off
frequencies
(Hz)

0.5 –
300

Cut-off
frequency
(Hz)

0.22 -
39.1k

ENOB
(bits) 9.02
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Figure 6. Schematic presenting wavelet generator’s operation

IV. POWER CONSUMPTION OPTIMIZATION

The SFS algorithm, presented in Section II, is modified to
take into account two new ideas: the maximum number of
feature extractor used in parallel and the power consumption
of each wavelet. The main way to reduce the global power
consumption is to minimize the number of branches and
acquire several features from the same extractor. To ensure
that, two features must use wavelets which are not overlapping
in time domain. After evaluating each combination, features
are ranked according their performance. Knowing the number
of extractors and the previously selected features, SFS selects
the first feature of the rank, which can be extracted. If there is
no solution, SFS ends. Fig. 8 shows the classification accuracy
obtained from this new version of SFS by limiting to 3 and 5
the number of branches in our A2F, where the different marks
indicate the branch chosen to extract the selected feature.

To minimize the power consumption, while maximizing
classification accuracy, a new evaluation function in SFS is
proposed:

Ji =
A (S ∪ {Xi})−A (S)

Efeature
(1)

where S is the set of selected features, Xi is the tested feature,
A(S) is the classification accuracy of the set S and Efeature

is the energy needed for the feature extraction. The initial
accuracy A(0) is set to 85% which corresponds to the accuracy
of a zero rule classifier, used as reference. A ZR classifier
assigns to each data item the most frequently occurring class

Figure 7. Wavelet generator XFAB 180 nm place and route schematic

in a data set. In our test dataset, about 85% of data was normal,
so ZR is right 85% of the time.

The estimation of the extraction cost of each wavelet
(Efeature) is calculated according to the following formula:

Efeature = Esampling + Eanalog + Edigital (2)

Esampling =
P

2ENOB .fs
(3)

Eanalog = ∆t. (PLNA + PPGA + PGMC) (4)
Edigital = ∆t.PGenerator (5)

where ∆t is the wavelet time support length, Esampling is
the energy needed per analog-to-digital conversion, this value
is constant regardless of the wavelet, Eanalog is the energy
needed for the analog component (LNA and PGA from [14]
and integrator presented in Section III), it is proportional
to the wavelet length, and Edigital is the energy needed by
the digital system to generate the wavelet. Fig. 9 shows the
classification accuracy and the total energy cost of selected
features according to this new criteria. We can see that with
the previous criteria, an accuracy of 98.4% can be reached
while requiring 10.9 µJ (6 features) and with this new criteria,
an accuracy of 98% can be reached while requiring 3.3 µJ (for
10 features).
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Figure 9. Comparison of classification accuracy and total energy cost
with/without power optimization

Now, a comparison of the three different approaches of
wireless sensors can be made to show the benefits of A2F
over classical approaches using Nyquist acquisition and analog
to information (A2I) sensors based on compressed sampling.
The bio-sensing front-end from [14] is considered as the
classical approach. It has a power consumption of 6.04 µW
and work at a sampling frequency Fs = 2 kHz. The second
approach is a random modulator pre-integrator A2I converter
described in [5]. This A2I works at a frequency of 2 kHz and
is configured with 32 branches and an analysis time window
of N = 128 samples. Each branch of referred A2I has a
power consumption of 28 nW. In this study, the energy for
recovery step of A2I is not considered. We consider here, the
wireless transmission system from [17], based on Bluetooth
low energy (BLE) protocol which requires 37 nJ to transmit a
10-bit sample. The Fig. 10 presents the energy needed by these
three types of sensor to make the acquisition of 10 seconds of
signal. The vertical axis, for energy, has a logarithmic scale.
The energy needed by the classical approach is about 800.4 µJ,
while the energy consumed by the A2I sensor is about 194 µJ.
The proposed solution only consumes 52.3 µJ, so the energy
needed is divided by about 15.3 compared to classical ap-
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Figure 10. Comparison of the energy needed to acquire 10 seconds of signal
by the 3 types of sensors

proach and by approximately 3.7 compared to A2I sensor. It
shows the benefits of A2F over the two other approaches: by
adding three analog feature extractors, the number of samples
is wildly reduced compared to other approaches and therefore
global power consumption of wireless sensors decreases.

V. CONCLUSION

In this paper, a 0.18 µm architecture is proposed to imple-
ment and make an estimation of the power consumption of
an Analog-to-feature converter, based on non-uniform wavelet
sampling, for ECG anomalies detection. The amount of possi-
ble wavelets provided by NUWS is very high, so well known
feature selection algorithms were used to decrease the size
of the wavelet dictionary while maximizing the classification
accuracy. In order to optimize the power consumption of this
A2F, we proposed to take into account two new criteria in
the selection process, using the Sequential Forward Search,
besides accuracy: the number of extractors used in parallel
and the energy needed to extract each feature. The proposed
SFS algorithm using this criterion allows to both decrease
the number of extracted features, and therefore the amount of
data the sensor had to transmit, and the number of extractors
by sharing them to extract several features during a unique
analysis time window. This selection step allows to know the
circuit’s complexity by determining the minimal number of
extractors needed to reach the desired accuracy, and therefore
to make a physical implementation of the entire analog-to-
feature converter. Finally, benefits of A2F over the two others
classical approaches and A2I sensors, were shown. Another
future work could also focus on the generalization of the A2F
to different low frequency signals, such as electroencephalo-
gram (EEG) or voice activity, to take advantage of the A2F’s
reconfigurability.
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