
HAL Id: hal-03365025
https://telecom-paris.hal.science/hal-03365025

Submitted on 28 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Evaluation and Construction of Glitch-resistant
Masked Functions

Sofiane Takarabt, Sylvain Guilley, Youssef Souissi, Khaled Karray, Laurent
Sauvage, Yves Mathieu

To cite this version:
Sofiane Takarabt, Sylvain Guilley, Youssef Souissi, Khaled Karray, Laurent Sauvage, et al.. Formal
Evaluation and Construction of Glitch-resistant Masked Functions. IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2021, Dec 2021, Virtual, United States. �hal-03365025�

https://telecom-paris.hal.science/hal-03365025
https://hal.archives-ouvertes.fr

Formal Evaluation and Construction of
Glitch-resistant Masked Functions

1st Sofiane Takarabt
Secure-IC

Paris, France
forename.name@secure-ic.com

2nd Sylvain Guilley
Secure-IC

Paris, France
forename.name@secure-ic.com

3rd Youssef Souissi
Secure-IC

Paris, France
forename.name@secure-ic.com

4th Khaled Karray
Secure-IC

Paris, France
forename.name@secure-ic.com

5th Laurent Sauvage
LTCI, Télécom Paris

Palaiseau, France
forename.name@telecom-paris.com

6th Yves Mathieu
LTCI, Télécom Paris

Palaiseau, France
forename.name@telecom-paris.com

Abstract—We give an algorithm that checks whether every
possible transition is masked. It allows to verify the absence of
first-order leakage from a masked netlist. It validates the state-of-
the-art masking schemes, such as Threshold Implementation and
Domain Oriented Masking, but also proves that more compact
netlists with equivalent functions are secure. We leverage this
methodology to propose a more compact implementation of AES
S-Box.

Index Terms—Cryptography, Side-channel attacks, Data pro-
tection, Masking countermeasure, Glitches, Secure S-Box imple-
mentation.

I. INTRODUCTION

During the last two decades, the Side-Channel Attack
(SCA) [16], [17] was one of the most important challenges in
cryptographic implementations. Since unprotected implementa-
tions can leak sensitive data through power consumption and
Electromagnetic Emanation (EM) [7], protecting against SCA
becomes a fundamental task to make implementations more
secure. To do so, designers proposed some countermeasures by
randomizing and hiding the intermediate data [10], [20]. Thus,
the physical leakage becomes independent of the sensitive data.
One of the most used countermeasure is Boolean masking
[12]. Theoretically, when implemented correctly, it ensures a
high level of security in that an attacker requires to capture
& analyze a significant number of observations to recover the
secret. However, in practice, and particularly for hardware
designs, masked implementations are not as secure as expected.
In fact, the formal model used to prove their resistance is not
precise enough. Due to propagation time in logic gates, many
transitions occur (a.k.a glitches) and [18], [19] pinpointed a
first order leakage in the masked AND gate proposed in [15],
[27]. To make masked (non-linear) gates secure, Threshold
Implementation (TI) [13], [23] provides alternative schemes that
resist against glitches. An efficient verification is then essential
to check the security of the whole scheme. Recently, many tools
that provide formal verification in presence of glitches have
been proposed [2], [4], [6]. Those tools suppose a powerful
attacker model as the one of d-probing model [15], and check

stronger properties. Nevertheless, those properties may be
stronger than necessary and incite designers to implement
over-complex schemes.

a) Our Contributions.: Masking schemes ensure that
sensitives variables are randomized. At a hardware level this
property must hold true not only at each clock cycle, but also
during the evaluation of the combinatorial logic. Due to the
delay of signal propagation within combinatorial gates, inter-
mediate values mixing previous and current states of signals
may be computed. This phenomenon is termed “glitching”,
and has the negative property that those transitions depend on
the sensitive (secret) value. State-of-the-art protections against
glitches either attempt to remove them to the point no further
leakage occurs through glitches, or to separate the combinatorial
gates dealing with the masks and the masked data. Those two
strategies ensure the absence of sensitive leakages through
glitches by a (conservative) design methodology [21], [28].

Now, we claim that those methodologies are overkill. We
formalize an algorithm to verify the absence of leakages
despite glitches in arbitrary netlists. This algorithm checks
that all possible glitch configurations are not leaking sensitive
information. We leverage this algorithm to validate the security
of masked netlists which are optimized (with respect to gate
count) compared to state-of-the-art glitch-resistant masking
schemes. We exhibit examples of netlists smaller than state-of-
the-art ones. Those netlists do not follow the design principles
of the state-of-the-art resistant logic styles. Tools have been
proposed to check styles, and obviously, they report a leakage
warning on our optimized design, but we show that those are
false positives. Our methodology allows for an exact verification
in such a way that it does not check for sufficient condition,
but it does check that each transition is properly “masked”.

b) Outline.: The paper is organised as follows: in sec-
tion II we recall the state-of-the-art concepts of masking,
evaluation and we detail the attacker model. In section III,
we give some definitions that will allow us to characterize the
type of leakage and the possible ways to analyze and identify
them. Then, in section IV, we present our approach through

some motivating examples. In section V we use the results of
section IV to implement a more compact inversion over GF24

secure despite of the presence of glitches. Analyses on EM
acquisitions are provided in section VI, where we show how
the leakage gradually decreases until its total disappearance
when the netlist is patched (and provably verified with our
methodology).

II. RELATED WORK

A. Principle of masking

The main goal of a masking scheme is to randomize the
manipulated data to make the physical leakage independent
of the secret value. Many ideas have been suggested in the
literature. It was first proposed in [10], [12] and further
extensions have been also studied for different implementations.
In [27], a masked AND gate at order one is designed using
a Boolean sharing. An extendable version to any protection
order was described in [15]. It is proven to be secure when
the computations are performed in a sequential order, which
can be sufficient for software implementations.

However, in hardware implementations, the order of eval-
uations is not always respected. Because of the propagation
time of the logic gates, a first order SCA leakage can remain
[18]. Thus the security of the masked gates of [15], [27] are
compromised [11], [22]. To cure this vulnerability, the TI has
been introduced in [23]. The main property of TI is the Non-
Completeness one (TI Non-Completeness Property (TINC)). It
forces all shares of the same variable not to be handled at the
same time by the same function.

To reduce the number of shares necessary to achieve a first-
order secure scheme, registers need to be inserted at the output
of the non-linear functions. The Domain Oriented Masking
(DOM) scheme comes with almost the same concept, but aims
at reducing the number of needed registers and fresh random
masks. Both approaches are secure against first order attacks.
In [24] Reparaz et al. highlighted similarities between each
scheme, and how to modify the classical multipliers ([15],
[27]) to achieve secure versions like TI.

B. Robustness validation

To validate a first order masking countermeasure, it is
necessary to check that each intermediate result is statistically
independent of the secret data: this is the probing security
model [15]. In a first step, a leakage can be simulated at the
algorithmic level. This method is used to prove the effectiveness
of the most known masking schemes presented previously.
However, in hardware implementations, some leakage may
remain because of physical defaults as shown in [18]. One of
the most critical leakages is induced because of the propagation
time inside logic gates. A logic gate evaluates the result for
each new entry with a delay equal to the propagation time
of the gate. When input signals of the gate do not change at
the same time (within the propagation time of the gate), the
output may change more than once. To model this phenomena,
a simulation based analysis can be adopted to emulate the
behaviour of each signal. This can be done on back-annotated

(or Post Synthesis (PS)) netlists using a hardware simulator (at
electrical or logical level) [1], [26]. It is notably not resilient
to environmental changes.

Recently, in 2017 Bertoni et al. [4] introduced a methodology
to evaluate the combinatorial part of a circuit in presence of
glitches. Followed by a formal method [6] based on Fourier
transform of the circuit gates, and a formal representation of
the leakage. However, it is remarkably very slow and time
consuming. A very similar way to analyse a circuit is presented
in [2]. It uses a symbolic representation of the leakage, which
is propagated through the combinatorial gates. It is known to
be more efficient, and checks stronger properties of probing
security [3]. Those tools actually instantiate an abstract version
of the circuit, and build an image of the SCA leakage, but do
not really consider a realistic timing information. By verifying
the properties of d-probing model, that are extended for gadgets
composition concept in [3], we can deduce whether or not the
circuit is secure. In some cases, to reduce the complexity of
the analysis, heuristics are used to over-estimate the leakage,
and avoid false negatives (but this allows some false positives).
It helps to locate any source of vulnerabilities, but does not
explain how and why the leakage is exploitable.

III. PRELIMINARIES

A. Notations

We denote by (⊕) and (∗) the XOR and AND opera-
tions on Boolean variables (lowercase) or vectors (uppercase)
respectively. To indicate the inputs (A,M) and the output
S of a gate, that implements a Boolean function f , we use
functional notations S = f(A,M). A delayed value of a signal
is indicated by apostrophes (S′). When the intermediate value
depends only on some (delayed) signals, they will be indicated
on its arguments, (for example: S′ = f(A′,M ′)). In general,
we use X for the secret data, M indicates the masks and A
the masked data A = X ⊕M . We suppose also that the masks
are uniformly distributed and cannot be guessed by an attacker.
The expression of a gate output S can be expressed either with
the tuple (A,M) or (X,M). To distinguish both, we index
the latter with X . Thus we have:

S = fX(X,M) = f(X ⊕M,M) = f(A,M).

The evaluation of a given design will use both notations
(or expressions) to determine which variable is leaking, and
where the vulnerability is located. Finally, we consider in our
study the XOR and the AND gates as elementary ones. Any
Boolean function can be seen as a multi-linear polynomial;
hence it can be implemented using those two gates. Building
secure masked AND is the most challenging task, since a
masked XOR is only two XOR gates, that deal with the
different shares independently.

B. Concepts

A formal based approach can be adopted to analyse the
netlist by checking that all signals are independent of the
secret data:

• For each gate output, deduce the corresponding Boolean
expression f from the netlist;

• Use some criterion of independence to ensure that fX is
statistically independent of the secret variable X . This
criterion can be deduced from a full formal representation
like in [2], [6], or by an exhaustive evaluation of the
conditional probabilities P(S|X). This probability (or
distribution) must be the same whatever the value taken
by X .

In terms of value, this is enough to ensure that each signal is
independent of the secret. However, in terms of transitions this
is not sufficient. The vulnerabilities introduced by glitches are
directly related to the leakage introduced by transitions. In our
context we consider two sources of exploitable vulnerabilities:
• Value based vulnerability: when a signal value is not

independent of the secret value.
• Transition based vulnerability: when the activity (or

transitions) of the signal depends on the secret.
To check the first vulnerability, the authors in [29] presented

a relation between the Walsh Transform (WT) and the statistical
dependency of a Boolean function with its variables. In the
following, A = (a0, · · · , an−1),M = (m0, · · · ,mn−1), X =
(x0, · · · , xn−1) are binary vectors, with A = X ⊕M .

Definition 1 (WT (from [29])): Let f be a Boolean function:

X = (x0, . . . , xn−1) 7→ f(X), GFn2 7→ GF2.

The Walsh Transform F =WT (f) of f is defined as:

GFn2 7→ Z, F :W 7→
∑

X∈GFn
2

f(X)(−1)W ·X

where

W ·X =

n−1⊕
i=0

wi ∗ xi

is the standard scalar product.
Theorem 1 (Correlation immunity [29]): The Boolean

combining function f for n binary variables is mth-order
correlation immune, where 1 ≤ m ≤ n iff its Walsh transform
F satisfies:

∀ W ∈ GFn2 , 1 ≤ HW (W) ≤ m, F (W) = 0.

Where HW denotes the Hamming Weight (HW).
Corollary 1: A function fX is statistically independent of

X , if it is independent of each subset of the involved secret
variables. In general, if fX is expressed as:

fX(x0, . . . , xn−1,m0, . . . ,mn−1)

then, fX is statistically independent of X iff :

∀ W ∈ GF 2n
2 , FX(W) = 0,

where wn = . . . = w2n−1 = 0.

Definition 2 (Security with respect to value): A Boolean
function f(A,M) is secure in terms of value if it is statistically
independent of X = A⊕M (i.e it satisfies corollary 1).

This gives a spectral equivalent version to check if any
Boolean function is statistically dependent on any set of secret
variables. As an example, if for W = (1, 1, 0, · · · , 0) we
have F (W) 6= 0, then f depends on (x0, x1). Nevertheless,
theorem 1 cannot be used directly to check if a given function
is secure in terms of transitions. To take transitions into account,
we need to consider two successive states of the signal.

Definition 3 (Transition leakage): We define the transition
leakage as the distance between two successive values of a
function f by DδA,δM (f,A,M) for some δA, δM ∈ GFn2 :

DδA,δM (f,A,M) = f(A⊕ δA,M ⊕ δM)⊕ f(A,M)

This distance is characterized by δ = (δA, δM), which is a bit-
vector such that the bits at one indicate the delayed signals. The
delayed variables are then, A′ = A⊕ δA and M ′ =M ⊕ δM .

IV. FORMALIZATION OF NETLIST STATIC ANALYSIS

In the following, we give some examples to introduce our
security verification methodology. Mainly we apply the notions
described previously to analyse non-linear functions in presence
of glitches. In section IV-A, we analyse the impact of a glitch at
the netlist inputs, and in section IV-B, we extend this approach
to netlist logic, and give a complete formal model that proves
security in presence of glitches. Finally, in section IV-D, we
give a simple masked AND gate that achieves our security
criteria.

A. Motivating examples

Example 1 (Vulnerable design): Let X = (x0, x1, x2),
M = (m0,m1,m2) and A = X ⊕M , and f defined as:

f(A,M) = (m2 ⊕ a0 ∗m1) ⊕ a1 ∗m0

which implements an equivalent component of the masked
AND gate described in [27]. We can easily check that f is
uniformly distributed in terms of value and independent of X
(i.e P(f = 1|X) = 1

2). However, in the case of a transition
when δA = (0, 1, 0) and δM = (0, 1, 0), we get:

DδA,δM (f,A,M) = a0 ⊕m0 = x0

which depends on X . Thus, this implementation is vulnerable
in terms of transition, and may leak in presence of glitches.
Besides, it leaks x0 only if the timing characteristic of the
device will have the couple (a1,m1) arrive after the other
signals, and the transitions (a1,m1) → (a′1,m

′
1) are seen

(almost) at the same time from the last XOR gate (red color).
Another interesting case is when δA = (1, 1, 0) and δM =
(1, 1, 0):

DδA,δM (f,A,M) = x0 ⊕ x1.

In this case, the leakage is not correlated to the HW of
X . This is in fact the general form of the leakage created
by glitches when the multi-linear polynomial of the gate is
of degree 2. In this configuration, it results in the WT of f
that FX(W) 6= 0 for W = (1, 1, 0, · · · , 0). The same holds
actually for the traces of power consumption (see section VI).

Example 2 (Secure design): Here we consider another case
that involves also both shares of the same variable. We have:
X = (x0, x1, x2, x3), M = (m0,m1,m2,m3), A = X ⊕M ,
and:

f(A,M) = a0 ∗ (m1 ⊕m2)⊕ a1 ∗ (m0 ⊕m3).

By analyzing all the possible transitions ∀ δA, δM ∈ GF 4
2 ,

we have always fX independent of X . We can see that if
both (m1,m2) (or (m0,m3)) change, f do not change, so the
number of transitions to compute can be reduced. The relevant
value of f ′ are:

f(A⊕ δA,M ⊕ δM) = (a0 ⊕ δ0) ∗ (m1 ⊕m2 ⊕ δ1)
⊕ (a1 ⊕ δ2) ∗ (m0 ⊕m3 ⊕ δ3)

with δi ∈ GF2, and δ0 = δa0 , δ2 = δa1 , δ1 = δm1
⊕ δm2

,
δ3 = δm0 ⊕ δm3 .

If δA = (0, 1, 0, 0) and δM = (0, 1, 0, 0) then:

DδA,δM (f,A,M) = x0 ⊕m3

which is uniform and independent of X . We can de-
duce that this is secure even in presence of glitches,
but according to [2], [6] this function is not secure, because
f uses all shares of the secret variables x0 = (a0 ⊕ m0)
and x1 = (a1 ⊕m1).

B. Formal model - Glitch-extension

In some cases, glitches can be induced because of the same
input signal due to an internal delay. If S has multiple paths
to the same gate, it may induce multiple transitions at the final
result. To take into account this behaviour, we introduce the
notion of transient input.

Definition 4 (Transient input): The transient input (Ã, M̃) of
a function f is the set of all variables that come from different
combinatorial paths. Thus, the same variable at different place
are considered independently. We denote also by f̃ the transient
expression of f . Thus, we have: f̃(Ã, M̃) = f(A,M).

To understand clearly this notion, it is more appropriate to
use expression tree, namely the prefix traversal.

Definition 5 (Prefix traversal): A prefix representation is the
expression produced when placing the operator first and the
two operands next.

In example 2, f can be expressed as:

f(A,M) = ⊕(∗(a0,⊕(m1,m2)), ∗(a1,⊕(m0,m3))) (1)

The advantage of this notation lies in the fact that it conserves
the structure of how the function is instantiated in the real
circuit. For instance, eq. (1) can be instantiated equivalently
by:

f(A,M) = ⊕(⊕(∗(a0,m1), ∗(a0,m2)),

⊕ (∗(a1,m0), ∗(a1,m3)))

which gives different leakage results when considering
glitches. More precisely, each leaf of the tree is considered
independently in the case of transitions, thus different δ could
be associated to the same variable.

Proposition 1 (Security with respect to transition (Glitch-
Extended Security)): Let f be the expression of the signal
S, and Ã, M̃ ∈ GF ñ2 the transient input variables of S. S is
secure against glitches iff for any δa, δm ∈ GF ñ2 :

Dδa,δm(f̃)(Ã, M̃)

is statistically independent of X = A⊕M .
Proof: In fact, Dδa,δm(f̃)(Ã, M̃) is a Boolean function

therefore, theorem 1 and corollary 1 apply directly.

(a) (b)

Fig. 1: Different ways to implement f of example 2.
Transient inputs for each gate are shown in blue: in (a)
(Ã, M̃) = ((a0, a1), (m0,m1,m2,m3)), (b) (Ã, M̃) =
((a0, a0, a1, a1), (m0,m1,m2,m3)). For each input we asso-
ciate different delay (δ).

In fig. 1, we show the two different ways to implement f
introduced in example 2. In the first case (section IV-B), f is
not leaking X . In the second case ((section IV-B)), f may leak
X . The reason is that, the variable a0 (resp. a1) may impact
the function f differently (at two different time samples).

C. Our leakage detection algorithm

Algorithm 1 scans the netlist (input S) and first checks
whether each node is masked, and then tests whether it is
vulnerable to glitches. If a configuration yields an unbalanced
distribution, then the algorithm returns the corresponding δ
and the leaking signal. The internal functions work as follows:
• get transient inputs: returns the inputs of each gate as

instantiated in the design (definition 4).
• get masked variables: returns the masked variables of

the input gate.
• get masks variables: returns the masks variables of the

input gate.
If all transitions do not depend on the sensitive variable X ,
then algorithm 1 returns “Secure”.

We insist that this verification methodology is agnostic in
the actual quantitative delays within the netlist, because we
abstract away the glitching source as an anticipated evaluation
anywhere in the netlist. Our threat model is that the netlist is
known, represented as a tree of gates, and is immutable. The
attacker can well probe a node, but cannot alter the netlist by
cutting wires or disabling gates.

We show in table I a comparison of our approach with other
existing formal analysis method.

In the following sub-section, we build a masked AND gate
secured against glitches, based on the previous observation

Algorithm 1: Security Verification Against Glitches.
Input: S: the design, A: List of masked variables, M :

List of mask variables
Output: “Secure” or first leaking signal

1 for s ∈ S do // For each signal s in the
netlist

2 transient inputs of s←
get transient inputs(s)

3 n← ‖transient inputs of s‖
4 Ms ←

get masks variables(transient input of s,M)
5 As ←

get masked variables(transient input of s,A)
6 X ← As ⊕Ms

7 f ← s(inputs of s)
8 fX ← f(X ⊕Ms,Ms)
9 value distribution← P(fX |X) // Security

in terms of value
10 if value distribution is not balanced then
11 return s // First order leaking

signal s in terms of value

12 for δ ∈ GFn2 do // Security in terms of
transition

13 f ′ ← s(transient inputs of s⊕ δ)
14 T ← f ⊕ f ′ // T is the transition
15 TX ← T (X ⊕Ms,Ms)
16 distribution← P(TX |X)
17 if distribution is not balanced then
18 return s, δ // s being the

leaking signal, and δ
indicating the delayed signal

19 return “Secure”

TABLE I: Comparison with state-of-the-art formal analysis
methods

Analysis
method

Leakage
location

Value
leakage
model

Exact
transient
leakage

Formal
leakage
expression

[2] 3 3 7 7
[6] 3 3 7 7

This paper 3 3 3 3

made in section IV-B. This version does not have a major
advantage over TI, but we use the same principle for more
concrete cases where the difference is more significant in terms
of area (section V).

D. Our glitch-resistant masked AND gate

Let ai = xi⊕mi and bi = yi⊕ni for i ∈ {0, 1}. In table II,
we give the different steps for implementing the masked AND
gate. The left one is insecure. The right one satisfies our security
model against glitches, and also in terms of value. To check

TABLE II: Masked implementation of AND gate. zi are fresh
random. Left: we have x0 ∗ y0 = i4 ⊕ z0; Right: we have
x0 ∗ y0 = T1 ⊕ T2 ⊕ T3.

Vulnerable masked AND [27] Our secure masked AND
s1 ← a0 ∗ b0 s1 ← (n0 ⊕ z0)
s2 ← a0 ∗ n0 s2 ← (m0 ⊕ z1)
s3 ← b0 ∗m0 s3 ← a0 ∗ s1
s4 ← m0 ∗ n0 s4 ← b0 ∗ s2
i1 ← z ⊕ s1 i1 ← b0 ⊕ z0
i2 ← i1 ⊕ s2 i2 ← a ∗ i1
i3 ← i2 ⊕ s3 i3 ← b ∗ z1
i4 ← i3 ⊕ s4 T1 ← s2 ⊕ s4

T2 ← i2 ⊕ i3
T3 ← m0 ∗ n0

that, let’s consider a non-linear function f , defined as:

f(A,B,M,N,Z) = ⊕(∗(a0,⊕(n0, z0)), ∗(b0,⊕(m0, z1))).
(2)

We can see that both shares of the secret (x0, y0) are
manipulated by f . We have seen in section IV-B that f is
secure according to algorithm 1. Particularly, as a case of
comparison with the classical masked AND gate when:

(a0, b0,m0, n0)→ (a0 ⊕ 1, b0 ⊕ 1,m0 ⊕ 1, n0 ⊕ 1)

we have:
(i′1)→ (i1) ≡ x0 ⊕ y0

and for f in eq. (2) we get (with f0 = a0 ∗ (n0 ⊕ z0) and
f1 = b0 ∗ (m0 ⊕ z1)):

(f ′0 ⊕ f ′1)→ (f0 ⊕ f1) ≡ x0 ⊕ y0 ⊕m1 ⊕ n1,

which is not vulnerable. Whatever the considered transition,
either the result depends only on one share of (x0, y0), or it is
masked by n1 or m1. In other words, each transition is masked
at least with one mask ni or mi.

We can implement a masked AND gate (without any
resharing of the inputs) using two fresh random z0 and z1
(we can reuse masks of other variables to reduce the usage of
randomness):

T1 = a0 ∗ (n0 ⊕ z0)⊕ b0 ∗ (m0 ⊕ z1),
T2 = a0 ∗ (b0 ⊕ z0)⊕ b ∗ z1,

T3 = m0 ∗ n0
(3)

Thus, the output result is x0∗y0 = T1⊕T2⊕T3. Incidentally,
we can see that T1 satisfies proposition 1 (cf. example 2), T2
and T3 satisfy the TINC property.

V. PRACTICAL CASE: MASKED INVERSION IN GF24

We design now a complete implementation of a GF24

inverter, based on the first-order masked Canright version of
the Advanced Encryption Standard (AES) Substitution Box
(S-Box). In section VI, we give the full implementation of our
S-Box, integrating our GF24 inverter. In the same section,
we compare our formal results with the results of digital
simulations at Register Transfer Level (RTL) and PS level.

For the sake of clarity, we focus our analyses on the
GF24 inverter. The results can be transposed to the operations
performed in GF28 inverter.

We detail the formal expression of each signal and explain
how the leakage is created. Subsequently, we propose a possible
fix, and constantly check the security of the design until no
leakage is reported.

A. Canright AES S-Box

Canright proposed an optimized instance of the AES S-Box
[9] based on standard CMOS gates XOR, NOR and NAND.
The inversion is computed over the Tower Field representation
of GF28 . The inversion of an element in GF28 can be reduced
to one inversion in GF24 , some multiplications and additions in
GF24 and GF22 . This implementation takes the masked input,
the input mask, and the output mask, 8 bits each. We can
find symmetry in the operations performed over GF24 inside
the GF28 inverter, and those performed over GF22 inside the
GF24 inverter. Thus, the GF24 inverter takes, 3 inputs of 4
bits (masked input, input mask and output mask).

B. Formal based evaluation of Canright inverter

If we explicitly write the expression of the inputs of csa
gate, we get (for one bit, namely bit number 1):

an1 = (a1 ∗ n1)⊕ ((a0 ⊕ a1) ∗ (n0 ⊕ n1))
mb1 = (m1 ∗ b1)⊕ ((m0 ⊕m1) ∗ (b0 ⊕ b1))
cst1 = a1 ⊕ b1 ⊕ a1 ∗ b1 ⊕ (a1 ⊕ a0) ∗ (b1 ⊕ b0)⊕N3

csa1 = cst1 ⊕ an1,
csb1 = csa1 ⊕mb1

where N3 is a fresh mask (one bit of the output mask). These
equations are also represented as a netlist in fig. 2.

Fig. 2: Masked circuit computing csb1. The leaking signals
(red color) are csa1 and csb1.

The order of summation is also important, if an1 and mb1
are summed together, the result will depend on X:

an1 ⊕mb1 = (x2 ∗ n0 ⊕ x2 ∗ n1 ⊕ x3 ∗ n0)
⊕ (x0 ∗m0 ⊕ x0 ∗m1 ⊕ x1 ∗m0) = Sab.

Obviously, P(Sab|X) 6= P(Sab), particularly for X = 0, we
have Sab = 0 with probability 1. Now, let us consider the case

where all signals are summed in the right order. For example,
the signal csa (csa = cst⊕ an). For the first bit, we have:

csa1 = a0 ∗ (b0 ⊕ b1)⊕ a1 ∗ b0 ⊕ a1
⊕ b1 ⊕ a1 ∗ n0 ⊕ a0 ∗ (n0 ⊕ n1))⊕N3.

In terms of value, the result is protected (at least) by the
fresh mask N3. However, in terms of transition in presence
of propagation time, a0 can arrive with some delay and the
transition (csa′1 → csa1) will leak (x0 ⊕ x1). According to
algorithm 1 when δa0 = 1:

csa′1 ⊕ csa1 = (a′0 ⊕ a0) ∗ (b0 ⊕ b1 ⊕ n0 ⊕ n1) = x0 ⊕ x1.

This depends on X , hence the Canright design is not secure.
Note however that, this leakage model is not conventional. Only
a thorough analysis and dedicated attacks can exploit this kind
of leakage, such as collision or template. Actual exploitation
of this first-order flaw is detailed in section VI-A.

C. Our GF24 inverter, compact and provably secure

In the following, we show how the inversion can be achieved
within only one cycle. Then, using the observation of eq. (3),
we reduce the number of needed registers (FF).

1) Inversion in GF24 : First we express the equations of the
inverse y = (y0, . . . , y3) of any element x = (x0, . . . , x3) ∈
GF 4

2 ' GF24 :

y0 = x1 ∗ x2 ∗ x3 ⊕ x0 ∗ x2 ⊕ x0 ∗ x3 ⊕ x1 ∗ x3 ⊕ x2
y1 = x0 ∗ x2 ∗ x3 ⊕ x0 ∗ x3 ⊕ x1 ∗ x3 ⊕ x2 ⊕ x3
y2 = x0 ∗ x1 ∗ x3 ⊕ x0 ∗ x2 ⊕ x1 ∗ x2 ⊕ x1 ∗ x3 ⊕ x0
y3 = x0 ∗ x1 ∗ x2 ⊕ x1 ∗ x2 ⊕ x1 ∗ x3 ⊕ x1 ⊕ x0

The masked result can be deduced by replacing xi by ai⊕mi.
For the first bit y0 we get:

y0 = S1 ⊕ S2 ⊕ S3 ⊕ S4 ⊕ S5 ⊕ S6 ⊕ S7 ⊕ S8 (4)

with,

S1 = a2 ∗ a3 ∗ a1 ⊕ a2 ∗ a0 ⊕ a3 ∗ a1,
S2 = a2 ∗ a3 ∗m1 ⊕ a2 ∗m0 ⊕ a3 ∗m0,

S3 = a2 ∗ a1 ∗m3 ⊕ a0 ∗m3 ⊕ a2,
S4 = a2 ∗m3 ∗m1 ⊕ a3 ∗m1,

S5 = a3 ∗ a1 ∗m2 ⊕ a0 ∗m2,

S6 = a3 ∗m2 ∗m1 ⊕ a3 ∗ a0 ⊕m2,

S7 = a1 ∗m2 ∗m3 ⊕ a1 ∗m3 ⊕m3 ∗m0,

S8 = m2 ∗m3 ∗m1 ⊕m2 ∗m0 ⊕m3 ∗m1

We can see that each result Si respects the TINC. Moreover,
as each monomial of degree 3 cannot be combined with any
other monomial of degree 3, the minimal number of shares
that respect TINC is 8. To achieve the inversion in one cycle,
8 FFs and 8 fresh random are needed to remask each Si. We
note that each yi can be expressed in the same way as eq. (4).

2) Reducing the number of registers: To reduce the number
of needed FFs, we need to optimize the masked computation
of monomials of degree 3. For y0 we have:

x1 ∗ x2 ∗ x3 = (a1 ⊕m1) ∗ x2 ∗ x3
a1 ∗ x2 ∗ x3 = a1 ∗ (a2 ∗ a3 ⊕ a2 ∗m3 ⊕ a3 ∗m2 ⊕m2 ∗m3)

= a1 ∗ (a2 ∗ (m3 ⊕ z0)⊕ a3 ∗ (m2 ⊕ z1))
⊕ a1 ∗ (a2 ∗ (a3 ⊕ z0)⊕ a3 ∗ z1)⊕ a1 ∗m2 ∗m3.

The same thing holds for m1. Thus, we reduce the number of
needed FFs to 6. Finally, the masked computation of the LSB
of the inverse in GF16 is implemented as:

y0 = S1 ⊕ S2 ⊕ S3 ⊕ S4 ⊕ S5 ⊕ S6 (5)

with,

S1 = a1 ∗ (a2 ∗ (m3 ⊕ z0)⊕ a3 ∗ (m2 ⊕ z1))
S2 = m1 ∗ (a2 ∗ (m3 ⊕ z0)⊕ a3 ∗ (m2 ⊕ z1))
S3 = a1 ∗ (a2 ∗ (a3 ⊕ z0)⊕ a3 ∗ z1 ⊕ a3)
⊕ a0 ∗ (a2 ⊕ a3)⊕ a2

S4 = m1 ∗ (a2 ∗ (a3 ⊕ z0)⊕ a3 ∗ z1 ⊕ a3)⊕m0 ∗ (a2 ⊕ a3)
S5 = a1 ∗ (m2 ∗m3 ⊕m3)⊕ a0 ∗ (m2 ⊕m3)

S6 = m1 ∗ (m2 ∗m3 ⊕m3)⊕m0 ∗ (m2 ⊕m3)⊕m2

Note that each signal Si satisfies corollary 1 and proposition 1
and hence, algorithm 1 returns “Secure” for each Si. To ensure
a secure compression, each Si needs to be remasked with a
fresh mask and stored into a register (Siff

← Si⊕zj). At most,
8 new fresh masks are needed. For each bit yi, the positions
of the masks zj can be changed such that the output mask of
each bit would be different. The number of possible output
masks is: (86) = 28.

We synthesized the GF24 inversion, using the Cadence
GSCLIB045 standard cell demonstration library, without any
timing constraint. The comparison metric is the Gate Equivalent
(GE) relative to the NAND2X1 cell of the library.

TABLE III: GF24 inverter - Comparing areas (GE)

Implementation GE
(logic)

GE
(sequential) #Cycles First-order security

Value Glitch
Canright [8] 153 0 0 3 7
DOM [13] 358 144 2 3 3
TI [5] 618 / 1 3 3
This paper
(eq. (5))

296 127 1 3 3

The reference design is a part of the simple Canright
design from [8]. As shown in table III, the combinational
area roughly double, and 30% of more area is added for the
registers. Compared with the DOM version (without pipeline),
our version is 19% smaller. The TI implementation from [5]
takes much more area. The number of GE is taken from the
publication and not issued from the same library, but it still
huge compared with DOM and our version.

In fig. 3 we show the architecture of a one bit inversion.
Each Si is remasked with a new fresh mask before registration

Fig. 3: Our new design of one bit GF24 inversion - Formally
proven to resist against glitches.

(green registers M-FF). We have proven by netlist traversal
algorithm (algorithm 1) that each signal in the design verifies
corollary 1 for security in terms of value, and proposition 1
for security in terms of transitions (glitches).

VI. ACTUAL EXPLOITATION OF VULNERABLE NETLISTS

In this section, we demonstrate attacks on netlists which
have been demonstrated to contain vulnerabilities. First, in sec-
tion VI-A, we show some attacks on simulated traces. We use
Correlation Power Analysis (CPA) and Collision-Correlation
Power Analysis (CCA) for the exploitation phase. Second,
in section VI-C and section VI-D, we demonstrate some
vulnerabilities on measured EM traces, using the Normalized
Inter-Class Variance (NICV) metric.

A. SCA evaluation of Canright inverter - Digital simulation

Firstly, we have analysed the Canright RTL code based on
digital simulation. We have confirmed that all intermediate
results are correctly masked and independent of the secret data.
Secondly, the same analysis was performed on a synthesized
netlist using a SAKURA-G Field Programmable Gate Arrays
(FPGA) target (without timing), and no leakage has been
reported. Once again, all combinatorial signals are independent
of the secret data, and the synthesizer did not make any
optimisation that may unmask the secret data. This is consistent
with our constraints: we have forced the synthesizer to keep
all intermediate signals and the hierarchy of each module.

Finally, when we added the timing information to the netlist,
the tool has reported several leaking signals. For instance, the
first leaking level was at the compression step of the multipliers
outputs, similarly to the case of the classical multiplier.

The first reported leakage in the design was the signal csa
(see fig. 2). This signal is the result of a XOR of the output of
two non-linear functions that deal with some identical shared
data.

Based on the simulation results, we were able to explicitly
specify the timing information on the SDF file. For this case,
we removed all the timing information except those of a0.
Each signal is sampled at 10 ps, which allows to capture all
the transitions independently.

Fig. 4: CPA on csa1 activity. Only 75 traces are sufficient to
recover the secret key.

As expected, the leakage was correlated to (x0 ⊕ x1). In
fig. 4, we show the result of the CPA using the leakage model
returning (x0⊕x1), the red curve shows the result of the right
key. We get the same results using CCA. The leakage model L
is computed for any key hypothesis K and the (known) output
C ∈ GF 4

2 as the following:

X = (c⊕K)−1 ∈ GF 4
2

L(C,K) = x0 ⊕ x1.
(6)

We recall that, by convention, the inverse of 0 is mapped to 0
itself.

As explained in section II, this leakage is created only if
the change induced by a0 would influence the gate csa at the
same time (within the propagation time of the XOR LUT).

B. SCA evaluation of our inverter - Digital simulation

The first and the second order CPA based on simulated traces
of our design (presented in section V-C) is shown in fig. 5.

(a) (b)

Fig. 5: First (a) and second (b) order CPA on S1 of eq. (5).
The right key correlation is not distinguishable.

The result of the first-order CPA confirms that the secret
key is indistinguishable (see fig. 5a). Besides, even the second-
order CPA is not effective for instance (fig. 5b). The reason
is that, there is no configuration (a couple (δa, δm)) where a
given mask {mi} can leak alone (in terms of transition). If
the expression of the leakage involves one mask mi, it also
involves one mask zi. Thus, the combination of the leakage
cannot depend on xi because of the extra fresh mask zi.

C. EM analysis of GF24 inverter

To perform a real evaluation with a best characterisation of
the leakage, we have implemented a small substitution function
Sbox∗ using two GF16 inverters, thus we get a small block
encryption that we note AES∗, with:

Sbox∗(x7, · · · , x0) = ((x7, · · · , x3)−1, (x3, · · · , x0)−1)

In the following, we give the results of our leakage charac-
terisation on EM measurements. For each implementation, we
have different versions of the GF16 inverter; with and without
registers as presented in section V-C:

• AES∗0 : no register in the GF16 inverter.
• AES∗1 : only 3 registers are used instead of 6, we register

only Sr + Sr+1 for r ∈ {0, 2, 4}.
• AES∗2 : implementation of section V-C (fig. 6c). Please,

refer to eq. (5) for more understanding.

The different versions have the same number of cycles per
round.

(a) (b)

(c) (d)

Fig. 6: NICV based on an unmasked intermediate state of
AES∗: (a) AES∗0 with 200 000 traces, (b) AES∗1 with 600 000
traces, (c) AES∗2 with 1 000 000 traces and (d) a raw trace of
AES∗1 (first three rounds).

In fig. 6, we show how the leakage is progressively removed
by inserting registers (fig. 6c) for the different implementations
of AES∗. Comparing the results of fig. 6a and fig. 6b, the
leakage of AES∗1 is 10 times smaller than AES∗0 , whereas
AES∗2 does not show any visible leakage.

To mark the difference between a leakage easily character-
ized by a HW leakage model, we applied the WT transform
to the EM traces [14].

The results are displayed in fig. 7. For a leakage that can be
exploited by a HW model, the amplitude is more significant
when the base is equal to HW (w0, · · · , wn) = 1 (fig. 7a). On
the other hand, when the leakage is due to glitches (case of
fig. 6a), all the bases are almost equivalent. So the leakage is
a mixture of bits, like the one identified in section IV.

(a) (b)

Fig. 7: WT applied to EM traces: (a) HW leakage model case,
(b) Glitches leakage case. Basis = HW (W).

D. EM analysis of AES design: S-Box

For the full AES implementation, we have added registers
at the output of each GF16 multiplier (see figure fig. 10).
As previously, to observe the evolution of the leakage, we
implemented and analysed two versions of AES:
• AES1: only 3 registers are used instead of 6, like AES∗1 .
• AES2: implementation of section V-C.

They are equivalent to AES∗1 and AES∗2 , described in the
previous section.

(a) (b)

Fig. 8: NICV based on an unmasked intermediate state of
AES: (a) AES1 with 1 000 000 traces – very low leakage
(comparable to fig. 6b), (b) AES2 wiht 1 200 000 traces – no
leakage is visible.)

In fig. 8 we show the results of the NICV for our different
implementations of AES. In fig. 8a, we can note that the
leakage that we have identified in fig. 6b is more difficult to
detect because of the extra activity (noise) of the rest of the
AES S-Box, where fig. 8b do not show any leakage like for
fig. 6c.

VII. CONCLUSION

In this paper, we have evaluated the security of hardware
masked implementations against SCA vulnerabilities in pres-
ence of glitches. We have detailed the form of the leakage and
exposed the different ways to prevent information leakage.

Namely, we present an algorithm to check exactly for leakage
in terms of values and transitions in masked netlists. It is
subsequently possible to design more compact and optimized
functions. Indeed, our algorithm allows to check the security
of netlists implementing logic using gadgets which are less
constrained than the conservative methodology required by TI
or DOM.

We have given more understanding about the leakage of
masked non-linear gates based on in-depth analyses in terms of

transition based power consumption. Thus, we have identified
the critical parts on the non-linear gates that should be treated
carefully. In addition to a formal security proof, our results are
argued through empirical verification on simulated synthesised
netlist, as it was expected from the formal analysis in terms
of transition in presence of propagation time.

As a perspective, it is natural to extend this approach to
higher-order masking, while comparing the advantages and
disadvantages with more restrictive and abstract models. It
would also be necessary to model other physical phenomena,
such as coupling and technological dispersion that can induce
further exploitable leakages with, potentially, a very large
number of traces.

ACKNOWLEDGMENTS

This work has been partly financed via the BRAINE Project
from European Union’s Horizon2020 / ECSEL research and
innovation program, under grant agreement N◦ 876967. The
results have been integrated in the Catalyzr tool [25].

REFERENCES

[1] Alam, M., Ghosh, S., Mohan, M., Mukhopadhyay, D., Chowdhury, D.R.,
Gupta, I.: Effect of glitches against masked AES S-box implementation
and countermeasure. IET Information Security 3(1), 34–44 (2009)

[2] Barthe, G., Belaı̈d, S., Cassiers, G., Fouque, P.A., Grégoire, B., Standaert,
F.X.: maskverif: Automated verification of higher-order masking in
presence of physical defaults. In: European Symposium on Research in
Computer Security. pp. 300–318. Springer (2019)

[3] Barthe, G., Belaı̈d, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub,
P.Y., Zucchini, R.: Strong non-interference and type-directed higher-order
masking. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. pp. 116–129 (2016)

[4] Bertoni, G., Martinoli, M., Molteni, M.C.: A methodology for the
characterisation of leakages in combinatorial logic. Journal of Hardware
and Systems Security 1(3), 269–281 (2017)

[5] Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more
efficient AES threshold implementation. In: International Conference on
Cryptology in Africa. pp. 267–284. Springer (2014)

[6] Bloem, R., Groß, H., Iusupov, R., Könighofer, B., Mangard, S., Winter, J.:
Formal verification of masked hardware implementations in the presence
of glitches. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 321–353. Springer (2018)

[7] Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a
leakage model. In: International Workshop on Cryptographic Hardware
and Embedded Systems. pp. 16–29. Springer (2004)

[8] Canright, D.: David Canright’s tiny AES S-boxes, Verilog structural code
of the netlist: https://github.com/coruus/canright-aes-sboxes

[9] Canright, D., Batina, L.: A Very Compact “Perfectly Masked” S-Box
for AES. In: ACNS. Lecture Notes in Computer Science, vol. 5037, pp.
446–459 (2008)

[10] Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches
to counteract power-analysis attacks. In: Annual International Cryptology
Conference. pp. 398–412. Springer (1999)

[11] Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved
collision-correlation power analysis on first order protected AES. In:
International Workshop on Cryptographic Hardware and Embedded
Systems. pp. 49–62. Springer (2011)

[12] Coron, J.S., Goubin, L.: On boolean and arithmetic masking against
differential power analysis. In: International Workshop on Cryptographic
Hardware and Embedded Systems. pp. 231–237. Springer (2000)

[13] Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact
masked hardware implementations with arbitrary protection order. IACR
Cryptology ePrint Archive 2016, 486 (2016)

[14] Guilley, S., Heuser, A., Ming, T., Rioul, O.: Stochastic side-channel leak-
age analysis via orthonormal decomposition. In: International Conference
for Information Technology and Communications. pp. 12–27. Springer
(2017)

https://github.com/coruus/canright-aes-sboxes

[15] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware
against probing attacks. In: Annual International Cryptology Conference.
pp. 463–481. Springer (2003)

[16] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Annual
international cryptology conference. pp. 388–397. Springer (1999)

[17] Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In: Annual International Cryptology Conference.
pp. 104–113. Springer (1996)

[18] Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked
CMOS gates. In: Cryptographers’ Track at the RSA Conference. pp.
351–365. Springer (2005)

[19] Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of
masked AES hardware implementations. In: International Workshop on
Cryptographic Hardware and Embedded Systems. pp. 76–90. Springer
(2006)

[20] Messerges, T.S.: Securing the aes finalists against power analysis attacks.
In: International Workshop on Fast Software Encryption. pp. 150–164.
Springer (2000)

[21] Moradi, A., Mischke, O.: Glitch-free implementation of masking in
modern fpgas. In: 2012 IEEE International Symposium on Hardware-
Oriented Security and Trust. pp. 89–95. IEEE (2012)

[22] Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power
analysis collision attack. In: International Workshop on Cryptographic
Hardware and Embedded Systems. pp. 125–139. Springer (2010)

[23] Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations
against side-channel attacks and glitches. In: International conference on
information and communications security. pp. 529–545. Springer (2006)

[24] Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.:
Consolidating masking schemes. In: Annual Cryptology Conference. pp.
764–783. Springer (2015)

[25] Secure-IC: CATALYZR tool (CTZ), https://www.secure-ic.com/solutions/
catalyzr/, https://www.secure-ic.com/solutions/catalyzr/ and https://
cadforassurance.org/tools/design-for-trust/catalyzr/, Accessed online on
March 4th, 2021

[26] Soydan, S.: Analyzing the DPA leakage of the masked s-box via digital
simulation and reducing the leakage by inserting delay cells. In: 2010
Fourth International Conference on Emerging Security Information,
Systems and Technologies. pp. 221–227. IEEE (2010)

[27] Trichina, E.: Combinational Logic Design for AES SubByte Transfor-
mation on Masked Data. IACR Cryptology ePrint Archive 2003, 236
(2003)

[28] Wild, A., Moradi, A., Güneysu, T.: Glifred: Glitch-free duplication
towards power-equalized circuits on fpgas. IEEE Transactions on
Computers 67(3), 375–387 (2017)

[29] Xiao, G.Z., Massey, J.L.: A spectral characterization of correlation-
immune combining functions. IEEE Transactions on information theory
34(3), 569–571 (1988)

APPENDIX

A. More details on our design

In fig. 9, we illustrate the result of the synthesis of the
masked GF16 inverter, which implements our design given
in equation eq. (5). We implemented in Verilog our novel
Boolean equations for the inversion in GF24 . The nets not to
be simplified have been constrained to be kept in the netlist.
Otherwise, we let the synthesizer (Cadence Encounter) optimize
the netlist by merging common sub-expressions. The resulting
netlist is displayed in Fig. 9. We have verified formally that each
node fulfils the requirements of corollary 1 and proposition 1.
The combinational gates are as usual, and rectangle symbols
represent the 24 DFFs.

For the full AES, fig. 10 shows our implementation of the
S-Box. The names of the signals are the same as the original
one from [8].
• A = (a3, a2, a1, a0, b3, b2, b1, b0): 8-bits masked input
• M = (m3,m2,m1,m0, n3, n2, n1, n0): 8-bits input mask
• N : 8-bits output mask

CLK

A[3:0]

M[3:0]

N[7:0]

Q[3:0]

[0:7]

[0:3]

[0:3]

[0:3]

.. .

.. .

.. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.. .

.. .

.. .

.. .

.. .

.. .

.. .

.. .

.. .

.. .

.. .

.. .

.. .

.. .

.. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.. .

.
.
. .

.
.
. .

.
.
. .

.. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.. .

.
.
. .

.
.
. .

.
.
. .

.. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.
. .

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

Fig. 9: Masked GF24 inverter synthesis result. The synthesizer
did not optimize the design. All signals are correctly kept
(using ”keep” attribute).

X

X

X

X

X

X
GF16

 inverter
o

Stage 1 Stage 2 Stage 3

8 bits bus

4 bits bus 4 bits register

b

n

a

m

X

csm

cst

Z

Small linear function

Non-linear function

N

X GF16 Multiplier

XOR

24 bits register

Fig. 10: AES S-Box scheme using our secure GF24 inverter.

• Z = (N, z1, · · · , z18): 26 fresh random bits including N
The stage 1 and 3 are identical to the stage 1 and stage 4 of
the DOM S-Box. The different output bits of the inverter GF16

are xored together at the GF16 multipliers level. We therefore
masked the 24 FFs with different masks to avoid any transition
resulting from a delayed register with an identical mask. Indeed
we need 18 fresh random bits (Z = (N, z1, · · · , z18)) .

https://www.secure-ic.com/solutions/catalyzr/
https://www.secure-ic.com/solutions/catalyzr/
https://www.secure-ic.com/solutions/catalyzr/
https://cadforassurance.org/tools/design-for-trust/catalyzr/
https://cadforassurance.org/tools/design-for-trust/catalyzr/

	Introduction
	Related work
	Principle of masking
	Robustness validation

	Preliminaries
	Notations
	Concepts

	Formalization of netlist static analysis
	Motivating examples
	Formal model - Glitch-extension
	Our leakage detection algorithm
	Our glitch-resistant masked AND gate

	Practical case: Masked inversion in GF24
	Canright aes sbox
	Formal based evaluation of Canright inverter
	Our GF24 inverter, compact and provably secure
	Inversion in GF24
	Reducing the number of registers

	Actual exploitation of vulnerable netlists
	sca evaluation of Canright inverter - Digital simulation
	sca evaluation of our inverter - Digital simulation
	EM analysis of GF24 inverter
	EM analysis of AES design: sbox

	Conclusion
	References
	Appendix
	More details on our design

